Microstructural Features of Recycled Aggregate Concrete: From Non-Structural to High-Performance Concrete

2019 ◽  
Vol 25 (3) ◽  
pp. 601-616 ◽  
Author(s):  
Diogo Pedro ◽  
Mafalda Guedes ◽  
Jorge de Brito ◽  
Luís Evangelista

AbstractThe use of concrete-recycled aggregates to produce high-performance concrete is limited by insufficient correlation between resulting microstructure and its influence on mechanical performance reproducibility. This work addresses this issue in a sequential approach: concrete microstructure was systematically analyzed and characterized by scanning electron microscopy and results were correlated with concrete compressive strength and water absorption ability. The influence of replacing natural aggregates (NA) with recycled concrete aggregates (RCA), with different source concrete strength levels, of silica fume (SF) addition and of mixing procedure was tested. The results show that the developed microstructure depends on the concrete composition and is conditioned by the distinct nature of NA, recycled aggregates from high-strength source concrete, and recycled aggregates from low-strength source concrete. SF was only effective at concrete densification when a two-stage mixing approach was used. The highest achieved strength in concrete with 100% incorporation of RCA was 97.3 MPa, comparable to that of conventional high-strength concrete with NA. This shows that incorporation of significant amounts of RCA replacing NA in concrete is not only a realistic approach to current environmental goals, but also a viable route for the production of high-performance concrete.

2020 ◽  
Vol 10 (15) ◽  
pp. 5132
Author(s):  
Muhammad Naveed Zafar ◽  
Muhammad Azhar Saleem ◽  
Jun Xia ◽  
Muhammad Mazhar Saleem

Enhanced quality and reduced on-site construction time are the basic features of prefabricated bridge elements and systems. Prefabricated lightweight bridge decks have already started finding their place in accelerated bridge construction (ABC). Therefore, the development of deck panels using high strength and high performance concrete has become an active area of research. Further optimization in such deck systems is possible using prestressing or replacement of raw materials with sustainable and recyclable materials. This research involves experimental evaluation of six full-depth precast prestressed high strength fiber-reinforced concrete (HSFRC) and six partial-depth sustainable ultra-high performance concrete (sUHPC) composite bridge deck panels. The composite panels comprise UHPC prepared with ground granulated blast furnace slag (GGBS) with the replacement of 30% cement content overlaid by recycled aggregate concrete made with replacement of 30% of coarse aggregates with recycled aggregates. The experimental variables for six HSFRC panels were depth, level of prestressing, and shear reinforcement. The six sUHPC panels were prepared with different shear and flexural reinforcements and sUHPC-normal/recycled aggregate concrete interface. Experimental results exhibit the promise of both systems to serve as an alternative to conventional bridge deck systems.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1247 ◽  
Author(s):  
Jianhe Xie ◽  
Jianbai Zhao ◽  
Junjie Wang ◽  
Chonghao Wang ◽  
Peiyan Huang ◽  
...  

There is a constant drive for the development of ultra-high-performance concrete using modern green engineering technologies. These concretes have to exhibit enhanced durability and incorporate energy-saving and environment-friendly functions. The object of this work was to develop a green concrete with an improved sulfate resistance. In this new type of concrete, recycled aggregates from construction and demolition (C&D) waste were used as coarse aggregates, and granulated blast furnace slag (GGBS) and fly ash-based geopolymer were used to totally replace the cement in concrete. This study focused on the sulfate resistance of this geopolymer recycled aggregate concrete (GRAC). A series of measurements including compression, X-ray diffraction (XRD), and scanning electron microscopy (SEM) tests were conducted to investigate the physical properties and hydration mechanisms of the GRAC after different exposure cycles in a sulfate environment. The results indicate that the GRAC with a higher content of GGBS had a lower mass loss and a higher residual compressive strength after the sulfate exposure. The proposed GRACs, showing an excellent sulfate resistance, can be used in construction projects in sulfate environments and hence can reduce the need for cement as well as the disposal of C&D wastes.


2013 ◽  
Vol 811 ◽  
pp. 249-253 ◽  
Author(s):  
Wei Li ◽  
Hai Ying Zhang

Experiments on influence of species of aggregate and mixing method on interfacial zone in recycled aggregate concrete were investigated. SEM observations revealed that a recycle normal-strength concrete aggregate consist of loose and porous interfacial structure, whereas a recycled high performance concrete (HPC) aggregate and a triple mixing (TM) consist mainly of dense hydrates. Various admixtures on ITZ was produced that consumed CH in the pore, modified attached cement mortar. Strength of recycled concrete was explained by interaction between cements paste and recycled aggregate. The result verified that the relatively dense pore structure of the recycled concrete benefit to development of mechanical properties.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Haifeng Yang ◽  
Zhiheng Deng ◽  
Yinghong Qin ◽  
Liangsheng Lv

This paper investigated bond-slip characteristics of chloride-induced corroded reinforced concrete incorporating different levels of recycled concrete aggregates (RCA). Pullout tests were adopted to evaluate the bonding and debonding behaviors of the embedded rebar experiencing different corrosion levels. Both high- and low-strength concrete were considered. Bond-slip curves were recorded to determine the influences of rebar corrosion levels and RCA replacements on the bond strength and debonding energy of the specimens. Test results indicate that increasing rebar corrosion level gradually weakens the antisliding ability of reinforced recycled aggregate concrete (RAC) except for a small level corrosion and the degradation rate of ultimate bond strength increases with a decrease of compressive strength at 0.5% rebar corrosion. The results also demonstrate that the ultimate bond strength of reinforced RAC slightly decreases with an increase of RCA replacement. However, the relative bond strength between uncorroded rebar and RAC is little affected by RCA content, while it decreases with an increase of RCA replacement in high-strength specimens after rebar corrosion. The debonding energy between deformed rebar and RAC is found decreasing with the increment of the rebar corrosion level and increasing with an increase of RAC content.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 186 ◽  
Author(s):  
Barbara Sadowska-Buraczewska ◽  
Danuta Barnat-Hunek ◽  
Małgorzata Szafraniec

The use of recycled concrete aggregates (RCA) in high performance concrete (HPC) was analyzed. The paper presents the experimental studies of model reinforced concrete beams with a rectangular section using high-performance recycled aggregates. Two variable contents of recycled aggregate concrete were used in this study: 50% and 100%. The experimental analyses conducted as immediate studies concerned the following issues: short time loads-deflection, load-carrying capacity of beams, deformation of concrete, cracks, and long-term loads-deflection. The comparative analysis involves the behavior of beams made of high performance concrete-high strength concrete (HPC-HSC) recycled aggregates with model control elements made of regular concrete based on natural aggregates. The deflection values for the recycled aggregate beams were 20% higher than in the case of the control beams made of HPC-HSC exclusively. Replacement of aggregate with recycled concrete aggregate resulted in a large decrease in the value of these two parameters, i.e., compression strength by about 42% and modulus of elasticity by about 33%.


2020 ◽  
Vol 12 (22) ◽  
pp. 9399
Author(s):  
Luisa Pani ◽  
Lorena Francesconi ◽  
James Rombi ◽  
Fausto Mistretta ◽  
Mauro Sassu ◽  
...  

Recycling concrete construction waste is a promising way towards sustainable construction. Indeed, replacing natural aggregates with recycled aggregates obtained from concrete waste lowers the environmental impact of concrete constructions and improves natural resource conservation. This paper reports on an experimental study on mechanical and durability properties of concretes casted with recycled aggregates obtained from two different parent concretes, belonging to two structural elements of the old Cagliari stadium. The effects of parent concretes on coarse recycled aggregates and on new structural concretes produced with different replacement percentages of these recycled aggregates are investigated. Mechanical properties (compressive strength, modulus of elasticity, and splitting tensile strength) and durability properties (water absorption, freeze thaw, and chloride penetration resistance) are experimentally evaluated and analyzed as fundamental features to assess structural concrete behavior. The results show that the mechanical performance of recycled concrete is not related to the parent concrete characteristics. Furthermore, the resistance to pressured water penetration is not reduced by the presence of recycled aggregates, and instead, it happens for the chloride penetration resistance. The resistance to frost–thawing seems not related to the recycled aggregates replacement percentage, while an influence of the parent concrete has been assessed.


2021 ◽  
Vol 13 (13) ◽  
pp. 7498
Author(s):  
Tan Li ◽  
Jianzhuang Xiao

Concrete made with large-size recycled aggregates is a new kind of recycled concrete, where the size of the recycled aggregate used is 25–80 mm, which is generally three times that of conventional aggregate. Thus, its composition and mechanical properties are different from that of conventional recycled concrete and can be applied in large-volume structures. In this study, recycled aggregate generated in two stages with randomly distributed gravels and mortar was used to replace the conventional recycled aggregate model, to observe the internal stress state and cracking of the large-size recycled aggregate. This paper also investigated the mechanical properties, such as the compressive strength, crack morphology, and stress–strain curve, of concrete with large-size recycled aggregates under different confining pressures and recycled aggregate incorporation ratios. Through this research, it was found that when compared with conventional concrete, under the confining pressure, the strength of large-size recycled aggregate concrete did not decrease significantly at the same stress state, moreover, the stiffness was increased. Confining pressure has a significant influence on the strength of large-size recycled aggregate cocrete.


2012 ◽  
Vol 610-613 ◽  
pp. 573-576
Author(s):  
Zheng Jun Wang ◽  
Jia Bin Liang

This paper discusses the development of water-reducing agent and the present situation of the application of high performance concrete. The traditional concrete will be substituted by high performance concrete, green concrete. In the course of appearance of high performance and green, concrete admixtures plays an extremely important role. Concrete water-reducing agent is admixture of the main part. In the case of keeping liquidity, it can make water consumption reduce, so the concrete strength and durability can be improved. It is applicable to all kinds of industrial and civil construction engineering, and it can be applied to different strength grade of concrete. It has important significance for mass concrete engineering, marine building facilities, and component and product of high strength lightweight concrete.


Author(s):  
Samer Ghosn ◽  
Nour Cherkawi ◽  
Bilal Hamad

Abstract This paper reports on the first phase of a multi-phase research program conducted at the American University of Beirut (AUB) on “Hemp and Recycled Aggregates Concrete” (HRAC). HRAC is a new sustainable concrete material where hemp fibers are incorporated in the mix, the coarse aggregate content is reduced by 20% of the concrete volume, and 50% of the natural coarse aggregates (NCA) are replaced by recycled concrete aggregates (RCA), thus saving on natural resources and addressing the problem of waste material disposal. The effect of the new material on concrete consistency and hardened mechanical properties was studied. Also, few durability tests were conducted. Variables included percentage replacement of NCA by RCA (0 or 50%), maximum size aggregate (10 or 20 mm), hemp fiber length (20 or 30 mm), and hemp fiber treatment (alkali or silane or acetyl). Fiber characterization tests were conducted including morphology, crystallinity, and thermal analysis. The tests indicated that alkali and acetyl fiber treatments were better than the silane treatment in removing impurities on the fiber surface. Also, alkali and acetyl treatments have increased the crystallinity of the fibers while silane treatment decreased it. Results of mechanical properties tests showed that while HRAC has considerable lower compressive strength and modulus of elasticity than plain concrete, the flexural strength and splitting tensile strength are not significantly affected. The flexural stress–strain behavior of HRAC is ductile as compared to the brittle behavior of the plain concrete beams indicating positive impact on toughness and energy dissipation. The durability tests indicated that whereas HRAC mixes have higher absorption than plain concrete, they have better thermal properties and their resistance to freeze–thaw cycles is comparable to plain concrete. All test results were not significantly affected by fiber length or fiber treatment.


2012 ◽  
Vol 174-177 ◽  
pp. 1277-1280 ◽  
Author(s):  
Hai Yong Cai ◽  
Min Zhang ◽  
Ling Bo Dang

Compressive strengths of recycled aggregate concrete(RAC) with different recycled aggregates(RA) replacement ratios at 7d, 28d, 60d ages are investigated respectively. Failure process and failure mode of RAC are analyzed, influences on compressive strength with same mix ratio and different RA replacement ratios are analyzed, and the reason is investigated in this paper. The experimental results indicate that compressive strength of recycled concrete at 28d age can reach the standard generally, it is feasible to mix concrete with recycled aggregates, compressive strength with 50% replacement ratio is relatively high.


Sign in / Sign up

Export Citation Format

Share Document