A Dynamic Film Thickness Control System Based on Automatic Wind Ring

2013 ◽  
Vol 823 ◽  
pp. 67-71
Author(s):  
Li Cai ◽  
Yue Gang Tan

Film thickness is one of the important parameters in the plastic film production process.A dynamic film thickness control system ,gradually adjusting the opening degree of the wind ring, is utilized for real-time control film thickness, enabling the film thickness to meet the requirements.This paper proposes a dynamic film thickness control system based on automatic wind ring ,consisting of industrial control computer, capacitance detection module, wing ring device , motor drives and so on.Then it further states the method of controlling the opening degree of wind ring by a series of stepper motors. The method can make the film thickness uniformity better,combining the traditional film production line with an idea of controlling automatic wind ring .

Author(s):  
Xiaobei Wang

Objective: The cotton textile industry, as a competitive industry in China's international competition, is confronting new opportunities and challenges brought by the growing process of mechatronics. To further improve the traditional drive control of combing machines made in China and the automatic level of machines as a whole, some of our cotton textile enterprises have undertaken necessary technical transformations on the combing machines so as to raise the operational efficiency and production technology of domestic textile equipments. Methods: This paper focuses on the basic status and dynamic characteristics of the drive part of the domestic new comber, and analyzes the operation process of the comber and the prominent problems from the production practice. Results: The technically improved drive control system uses an industrial control computer (IPC) as the core of the system, which effectively improves the overall working efficiency of the comber, and improves the production accuracy and production efficiency. Conclusion: The combers that are textile machinery equipments with comprehensive application of machines, electricity, gases and instruments, play a vital role in enhancing product quality and production efficiency. Highly intelligent and integrated process control, real-time monitoring and accurate data acquisition and data analysis have become the mainstreams in the development of auto-control. Therefore, the commitment of high technology to transform the traditional production mode has also been an important research.


Author(s):  
Chong Zou ◽  
Puzhen Gao ◽  
Wei Pan ◽  
Zheng Yang ◽  
Xianbing Chen

We preliminarily designed a power tracking and control system using single-chip computers and industrial control computer in the electric heating simulated power loop. The system is an innovational design based on the proven simulated nuclear power loop, with increased techniques of step-less power regulation system and modeling nuclear feedback effect correctional programs. We promoted both hardware and software designs of this power tracking and control system in this paper. It used single-chip computers as the core control chips and an industrial control computer as the additional correctional program and record carrier. The process and implementation of the control software are presented, which is designed as a fuzzy theoretical nonlinear system. In order to ensure the subsequent updates, the access interface of the system is open for following correctional programs, including the correctional program of void fraction effect, temperature effect, hysteresis effect and heat power distribution effect. Taken hysteresis effect correctional program as an example, we use an offset tic-tac clock replacing the inherent tic-tac clock in different devices of the system in order to reduce the hysteresis effect of measuring and corresponding errors. We also put out a preliminary analysis of the accurate synchronization for the system at the end of the paper.


1995 ◽  
Vol 389 ◽  
Author(s):  
K. C. Saraswat ◽  
Y. Chen ◽  
L. Degertekin ◽  
B. T. Khuri-Yakub

ABSTRACTA highly flexible Rapid Thermal Multiprocessing (RTM) reactor is described. This flexibility is the result of several new innovations: a lamp system, an acoustic thermometer and a real-time control system. The new lamp has been optimally designed through the use of a “virtual reactor” methodology to obtain the best possible wafer temperature uniformity. It consists of multiple concentric rings composed of light bulbs with horizontal filaments. Each ring is independently and dynamically controlled providing better control over the spatial and temporal optical flux profile resulting in excellent temperature uniformity over a wide range of process conditions. An acoustic thermometer non-invasively allows complete wafer temperature tomography under all process conditions - a critically important measurement never obtained before. For real-time equipment and process control a model based multivariable control system has been developed. Extensive integration of computers and related technology for specification, communication, execution, monitoring, control, and diagnosis demonstrates the programmability of the RTM.


2014 ◽  
Vol 926-930 ◽  
pp. 1497-1500
Author(s):  
Xu Yang Chu ◽  
Gang Liu ◽  
Chun Mei Wang ◽  
Kai Zhu ◽  
Da Yun Chen ◽  
...  

This paper describe the principles of Servo Control System of Electrical Discharge Machining Based on PMAC .To meet the requirements of processing and Put forward based on PMAC servo control system. This control system combines hardware resource with PMAC real-time control function. Elaborate human-computer interface developing process.


2014 ◽  
Vol 511-512 ◽  
pp. 1123-1127
Author(s):  
Mei Long Ju ◽  
Xiu Qin Zhai ◽  
Qing Zhang

According to the characteristics of Wet Flue Gas Desulphurization (FGD), this paper brings forward the automatic control requirements and the control methods. The automatic control system is composed of a Programmable Logic Controller (PLC) and an industrial control computer (PC). The automatic control system can monitor the operating parameters of FGD system automatically and conduct automatic control and adjustment to FGD system. The PLC is responsible for the data collection and automatic control, while the PC is responsible for the surveillance of FGD system operation and the data processing through mutual communications between PC and PLC, which realizes the communication between human and machine and ensures the safe, stable and economic operation of the FGD system.


Sign in / Sign up

Export Citation Format

Share Document