AC Impedance and DC Galvanic Current for Monitoring Maturity of Cement Mortar and Rebar Corrosion

2013 ◽  
Vol 831 ◽  
pp. 44-48 ◽  
Author(s):  
Adel M. Husain ◽  
Suad Khalid Al-Bahar ◽  
Safaa M. Abdul Salam

The maturity behavior of cement mortar specimens with different concrete additives during the 28 day curing period has been examined using the AC Impedance technique. The main focus of this part of the study is to understand the impedance and capacitance behavior of the steel rebar in cement mortar using different additives during the early stages of hydration process. In this respect, two sets of specimens were prepared: One set consist of two graphite electrodes surrounded by a carbon steel rod for AC Impedance measurements. Another set consisted of two carbon steel setup that has been used for monitoring corrosion of two steel reinforcement bars embedded in cylindrical mortar specimens. The specimens are placed in a salt fog (spray) cabinet for 1,000 hrs.Galvanic current between the two coupled electrodes has been measured using zero resistance ammeter (ZRA) to monitor the extent of corrosion. The in-situ measurement was carried out in a sequential manner over a periodical basis of up to 1,000 hrs of salt fog cabinet exposure. Different mortar mixes were studied including ground granulated blast furnace slag (GGBS) and silica fume (microsilica) as additives and calcium nitrite as corrosion inhibitor and chloride as a contamination species. This data helps in understanding the corrosion activities at the rebar-concrete when interface combined with salt fog test according to (ASTM B117), which can be further correlated with the atmospheric and marine corrosion of steel rebars in concrete. The overall results have indicated the tendency of the admixture to show different hydration processes during the early stages of concrete curing. The interfacial impedance spectrums and galvanic current testing clearly identifies and documents this process for each material.

2020 ◽  
Vol 9 (1) ◽  
pp. 1445-1455
Author(s):  
Song Gao ◽  
Jianlin Luo ◽  
Jigang Zhang ◽  
Fei Teng ◽  
Chao Liu ◽  
...  

Abstract Water and sand were used as the medium of multiwall carbon nanotube (MCNT) and prepared MCNT aqueous suspension and MCNT suspension-coated sand, respectively; afterwards, they were introduced into cement mortar (MNT/CM, MNTSM), respectively. Next, mechanical strengths and piezoresistive properties (DC resistivities (ρ v), AC impedances (Z r)) under cyclic loadings (σ c) of two types of MNT/CM and MNTSM nanocomposites were investigated to explore the intrinsic and self-sensing behaviors. Results reveal that MCNT can be evenly and well-coated on sand, which favors to achieve its intrinsic self-sensing property. Although the fraction changes in ρ v and Z r under the same σ c of MNTSM are both lower than those of MNT/CM, the stress sensitivity of MNTSM is only −1.16%/MPa (DC resistivity), −1.55%/MPa (AC impedance); its sensing linearity and stability (2.53, 2.45%; 2.73, 2.67%) are superior to those of MNT/CM (4.94, 2.57%; 3.78, 2.96%). Piezoresistivity using AC impedance technique is helpful to acquire balanced sensing sensitivity and stability while applied as intrinsic sensors in infrastructure.


2013 ◽  
Vol 795 ◽  
pp. 684-691 ◽  
Author(s):  
Wail N. Al-Rifaie ◽  
Omar Mohanad Mahdi ◽  
Waleed Khalil Ahmed

The present research examined the compressive and flexural strength of nanocement mortar by using micro cement, micro sand, nanosilica and nanoclay in developing a nanocement mortar which can lead to improvements in ferrocement construction. The measured results demonstrate the increase in compressive and flexural strength of mortars at early stages of hardening. In addition, the influence of heating on compressive strength of cement mortar. General expressions to predict the compressive strength, modulus of rupture for the developed nanocement mortar in the present work are proposed.


2002 ◽  
Vol 32 (6) ◽  
pp. 979-982 ◽  
Author(s):  
Shiyun Zhong ◽  
Meilun Shi ◽  
Zhiyuan Chen

Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 362 ◽  
Author(s):  
Maxim Petrunin ◽  
Liudmila Maksaeva ◽  
Natalia Gladkikh ◽  
Yuriy Makarychev ◽  
Marina Maleeva ◽  
...  

This article investigates the modification of a carbon steel surface by benzotriazole (BTA), and the structure and properties of the formed layers. Adsorption was studied by surface analytical methods such as X-ray photoelectron spectroscopy (XPS) and reflecting infrared microscopy (FTIR). It has been established that a polymer-like film containing iron-azole complexes that are 2 nm thick and strongly bonded to the metal is formed on the surface as a result of the azole interacting with a steel surface. This film is capable to inhibit uniform and localized corrosion of steel in neutral aqueous electrolytes containing chloride ions. It is shown that the iron-azole layer located at the interface acts as a promotor of adhesion, increasing the interaction of polymeric coatings with the steel surface. Taking into account these properties, the steel pretreatments can be used for improving the anticorrosion properties of polymeric coatings applied for the protection of steel constructions.


2012 ◽  
Author(s):  
Houshyar Asadi ◽  
Seyed Hamidreza Aghay Kaboli ◽  
Arash Mohammadi ◽  
Maysam Oladazimi

2011 ◽  
Vol 312-315 ◽  
pp. 1216-1221
Author(s):  
Norlida Kamarulzaman ◽  
Roshidah Rusdi ◽  
Nor Diyana Abdul Aziz ◽  
Lili Widarti Zainudin ◽  
Zurina Osman

The diffusion of charged species in solids is a very important part of the study of the electrical properties of materials. Electrical measurements using alternating current (ac) impedance is a powerful technique to study diffusing species in metal oxides as well as polymers. Three case studies are being presented here whereby the electrical properties of LiTaO3, Poly[2-methoxy-5-(2’-ethylhexyloxy)-(p-phenylenevinylene)] (MEH-PPV) and its composite are being studied using the same ac impedance technique. LiTaO3 is a metal oxide while MEH-PPV is a polymer. They are very different and therefore present very good examples for the versatility and power of ac impedance method. Electrical parameters such as conductivity and conduction behaviours of the conducting species can be extracted from the studies. The kinetics of the diffusing species can be elucidated by using proper analytical techniques.


Sign in / Sign up

Export Citation Format

Share Document