scholarly journals Preparation and piezoresistivity of carbon nanotube-coated sand reinforced cement mortar

2020 ◽  
Vol 9 (1) ◽  
pp. 1445-1455
Author(s):  
Song Gao ◽  
Jianlin Luo ◽  
Jigang Zhang ◽  
Fei Teng ◽  
Chao Liu ◽  
...  

Abstract Water and sand were used as the medium of multiwall carbon nanotube (MCNT) and prepared MCNT aqueous suspension and MCNT suspension-coated sand, respectively; afterwards, they were introduced into cement mortar (MNT/CM, MNTSM), respectively. Next, mechanical strengths and piezoresistive properties (DC resistivities (ρ v), AC impedances (Z r)) under cyclic loadings (σ c) of two types of MNT/CM and MNTSM nanocomposites were investigated to explore the intrinsic and self-sensing behaviors. Results reveal that MCNT can be evenly and well-coated on sand, which favors to achieve its intrinsic self-sensing property. Although the fraction changes in ρ v and Z r under the same σ c of MNTSM are both lower than those of MNT/CM, the stress sensitivity of MNTSM is only −1.16%/MPa (DC resistivity), −1.55%/MPa (AC impedance); its sensing linearity and stability (2.53, 2.45%; 2.73, 2.67%) are superior to those of MNT/CM (4.94, 2.57%; 3.78, 2.96%). Piezoresistivity using AC impedance technique is helpful to acquire balanced sensing sensitivity and stability while applied as intrinsic sensors in infrastructure.

2011 ◽  
Vol 142 ◽  
pp. 217-220
Author(s):  
Li Wu Chang ◽  
Jin Chao Yue ◽  
Yu Zhou Sun

In this study, effective dispersion of different amount of multiwall carbon nanotubes was achieved using a surfactant and in combination with the use of ultrasonic energy. The effects of surfactant and surfactant concentration on the plain cement mortar were investigated. Moreover, the mechanical behaviors of the carbon-nanotube reinforced composites were also analyzed. Experimental results indicate that the application of ultrasonic energy is absolutely necessary to produce a satisfactory dispersion of MWCNTs, and there exists an optimum weight ratio of surfactant to MWCNTs. It is found that the proper dispersion of MWCNTs can remarkably improve the flexural strength, compressive strength, and the toughness of the cement mortar composites.


2013 ◽  
Vol 831 ◽  
pp. 44-48 ◽  
Author(s):  
Adel M. Husain ◽  
Suad Khalid Al-Bahar ◽  
Safaa M. Abdul Salam

The maturity behavior of cement mortar specimens with different concrete additives during the 28 day curing period has been examined using the AC Impedance technique. The main focus of this part of the study is to understand the impedance and capacitance behavior of the steel rebar in cement mortar using different additives during the early stages of hydration process. In this respect, two sets of specimens were prepared: One set consist of two graphite electrodes surrounded by a carbon steel rod for AC Impedance measurements. Another set consisted of two carbon steel setup that has been used for monitoring corrosion of two steel reinforcement bars embedded in cylindrical mortar specimens. The specimens are placed in a salt fog (spray) cabinet for 1,000 hrs.Galvanic current between the two coupled electrodes has been measured using zero resistance ammeter (ZRA) to monitor the extent of corrosion. The in-situ measurement was carried out in a sequential manner over a periodical basis of up to 1,000 hrs of salt fog cabinet exposure. Different mortar mixes were studied including ground granulated blast furnace slag (GGBS) and silica fume (microsilica) as additives and calcium nitrite as corrosion inhibitor and chloride as a contamination species. This data helps in understanding the corrosion activities at the rebar-concrete when interface combined with salt fog test according to (ASTM B117), which can be further correlated with the atmospheric and marine corrosion of steel rebars in concrete. The overall results have indicated the tendency of the admixture to show different hydration processes during the early stages of concrete curing. The interfacial impedance spectrums and galvanic current testing clearly identifies and documents this process for each material.


2021 ◽  
Author(s):  
Biswajit Mahanty ◽  
Sujoy Kumar Ghosh ◽  
Kuntal Maity ◽  
KRITTISH ROY ◽  
Subrata Sarkar ◽  
...  

In this work, an all-fiber pyro- and piezo-electric nanogenerator (PPNG) is designed by multiwall carbon nanotube (MWCNT) doped poly(vinylidene fluoride) (PVDF) electrospun nanofibers as the active layer and interlocked conducting...


2005 ◽  
Vol 65 (11-12) ◽  
pp. 1703-1710 ◽  
Author(s):  
Hsu-Chiang Kuan ◽  
Chen-Chi M. Ma ◽  
Wei-Ping Chang ◽  
Siu-Ming Yuen ◽  
Hsin-Ho Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document