Improved Model to Determine the Tool Life and the Cutting Speed for Minimum Cost at Drilling the Steel 10TiMoNiCr175

2013 ◽  
Vol 837 ◽  
pp. 234-238
Author(s):  
Aurelian Vlase ◽  
Ovidiu Blăjină ◽  
Vlad Darie

In the specialized literature the cost of the machining process has been analyzed using a number of approaches and varying degrees of simplification to determine the optimum tool life and the tool speed. The accuracy of prediction is dependent on the degree of sophistication of the model. The purpose of this paper is the optimization of the cutting tool life and the cutting speed at the drilling of the stainless steels in terms of the minimum machining cost. A more comprehensive nonlinear programming model to minimize the total cost at the drilling of a stainless steel is developed in this paper. The optimum tool life and the associated tool speed are obtained by solving this model. The results can be taken into consideration in the educational studies and in the theoretical technical research. They can be implemented in the manufacturing activity.

2015 ◽  
Vol 809-810 ◽  
pp. 63-68 ◽  
Author(s):  
Marius Iacob ◽  
Ovidiu Blăjină ◽  
Aurelian Vlase

In the specialized literature the cost of the machining process has been analyzed using a number of approaches and varying degrees of simplification to determine the optimum tool life and the tool speed. The accuracy of prediction is dependent on the degree of sophistication of the model. The purpose of this paper is the optimization of the cutting tool life and the cutting speed at the drilling of the stainless steels in terms of the minimum machining cost. A more comprehensive nonlinear programming model to minimize the total cost at the drilling of a stainless steel is developed in this paper. The optimum tool life and the associated tool speed are obtained by solving this model. The results can be taken into consideration in the educational studies and in the theoretical technical research. They can be implemented in the manufacturing activity.


2015 ◽  
Vol 760 ◽  
pp. 439-444 ◽  
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Marius Iacob

In the specialized literature the cost of the machining process has been analyzed using a number of approaches and varying degrees of simplification to determine the optimum tool life and the tool speed. The accuracy of prediction is dependent on the degree of sophistication of the model. The purpose of this paper is the optimization of the cutting tool life and the cutting speed at the drilling of the stainless steels in terms of the minimum machining cost. A more comprehensive nonlinear programming model to minimize the total cost at the drilling of a stainless steel is developed in this paper. The optimum tool life and the associated tool speed are obtained by solving this model. The results can be taken into consideration in the educational studies and in the theoretical technical research. They can be implemented in the manufacturing activity.


2013 ◽  
Vol 837 ◽  
pp. 28-32
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Vlad Darie

The research in the last decade regarding their cutting machinability have highlighted the insufficiency of the data for establishing of the optimum cutting processing conditions and the optimum cutting regime. The purpose of this paper is the optimization of the tool life and the cutting speed at the drilling of the stainless steels in terms of the maximum productivity. A nonlinear programming model to maximize the productivity at the drilling of a stainless steel is developed in this paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the proposed mathematical model. The use of this productivity model allows greater accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The obtained results can be used in production activity, in order to increase the productivity of the stainless steels machining. Finally the paper suggests new research directions for the specialists interested in this field.


Author(s):  
Patricia Mun˜oz de Escalona ◽  
Paul G. Maropoulos

During a machining process, cutting parameters must be taken into account, since depending on them the cutting edge starts to wear out to the point that tool can fail and needs to be change, which increases the cost and time of production. Since wear is a negative phenomenon on the cutting tool, due to the fact that tool life is reduced, it is important to optimize the cutting variables to be used during the machining process, in order to increase tool life. This research is focused on the influence of cutting parameters such as cutting speed, feed per tooth and axial depth of cut on tool wear during a face milling operation. The Taguchi method is applied in this study, since it uses a special design of orthogonal array to study the entire parameters space, with only few numbers of experiments. Also a relationship between tool wear and the cutting parameters is presented. For the studies, a martensitic 416 stainless steel was selected, due to the importance of this material in the machining of valve parts and pump shafts.


1967 ◽  
Vol 89 (2) ◽  
pp. 315-322 ◽  
Author(s):  
D. S. Ermer ◽  
S. M. Wu

The effect of experimental error in tool life testing on the determination of the minimum cost cutting speed (Vmin) is investigated by using the concept of statistical inference. It is shown that Vmin is not uniquely defined but lies within a probable interval of cutting speeds, and that this interval is affected by the cost and time parameters and the experimental range of feed in tool life testing. The selection of a specific speed from the Vmin confidence interval is illustrated by a decision rule based on the minimax principle.


Author(s):  
Derek Yip-Hoi ◽  
Debasish Dutta

Abstract Changing worn tools is a major concern in planning operations on machining systems. Strategies for replacing tools range from changing each tool as it reaches its projected tool life, to changing all tools when the tool with the shortest life on the machining system is expended. Intermediate strategies involve changing tools in groups. Each of these strategies has two cost components associated with it: (1) the cost of lost production due to machine tool stoppage, and (2) the cost of unused tool life. The best tool grouping strategy minimizes the combined cost of lost production. In this paper we present an approach for finding good tool grouping strategies from inputs that include the tool utilization for a given machining application, and the tooling and machining system costs. A genetic algorithm is used as the underlying optimization paradigm for finding the minimum cost strategy. An example is presented for a part produced on a machining center.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yousaf Shad Muhammad ◽  
Saima Khan ◽  
Ijaz Hussain ◽  
Alaa Mohamd Shoukry ◽  
Sadaf Shamsuddin ◽  
...  

In this study, we developed a model which elaborates relationship among efficiency of an estimator and survey cost. This model is based on a multiobjective optimization programming structure. Survey cost and efficiency of related estimator(s) lie in different directions, i.e., if one increases, the other decreases. The model presented in this study computes cost for a desired level of efficiency on various characteristics (goals). The calibrated model minimizes the cost for the compromise optimal sample selection from different strata when characteristic j is subject to achieve at least 1−αj level of efficiency of its estimator. In the first step, the proposed model minimizes the variance for a fixed cost, and it then finds the rise in cost for an αj percent rise in efficiency of any characteristic j. The resultant model is a multiobjective compromise allocation goal programming model.


Author(s):  
Yu-Cheng Lin ◽  
Toly Chen

Owing to the cost constraint, it is difficult to incorporate all critical features into a single product design. To deal with this issue, analytic hierarchy process is a well-known method that compares the relative priorities of critical features. This study aims to illustrate that the judgment of a designer can be used to generate multiple diversified product designs. To this end, this study proposed a multibelief analytic hierarchy process and nonlinear programming approach. In the proposed methodology, a decision maker’s judgment matrix is decomposed into several single-belief judgment matrices that are more consistent than the original judgment matrix and represent diversified points of view regarding the relative priorities of factors. To this end, a nonlinear programming model is established and optimized. The proposed methodology was applied to a smart backpack design problem. It was concluded that a designer’s judgment was often inconsistent, which was ignored in the conventional analytic hierarchy process method but could be employed to diversify product designs.


POROS ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Sobron Yamin Lubis

Determination of optimum cutting speed in the lathe process should be considered in order to produce minimal machining costs and maximum production. Research The determination of optimum cutting speed was done to investigate the effect of cutting speed when cutting AISI 4140 steel against cost and production obtained. This study was conducted experimentally using lathe and theoretical calculations to determine machining costs and the amount of production produced. The lathe process is carried out using carbide cutting tools for cutting of AISI 4140 steel metal. In this machining the data obtained is the cutting time of the machining process tail loading process then the data is incorporated into the equation together with the cutting force, the cost of the cutting tools, the workpiece, the cost labourers. Then from the calculation results obtained by graph machining cost and production amount. Based on the graph, it is observed minimal machining cost and maximum production amount to know the optimum cutting point. The results obtained .The increase in cutting rate gives effect to the increase of production quantity, while for calculation of machining cost has decreased. Machining time has a significant effect on the change of production quantity and machining cost. The optimal cutting speed (Vcopt) is 269 m / min.


Sign in / Sign up

Export Citation Format

Share Document