Model for Economic Optimization of the Tool Life and the Cutting Speed at Drilling of the Steel 2NiCr185

2015 ◽  
Vol 760 ◽  
pp. 439-444 ◽  
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Marius Iacob

In the specialized literature the cost of the machining process has been analyzed using a number of approaches and varying degrees of simplification to determine the optimum tool life and the tool speed. The accuracy of prediction is dependent on the degree of sophistication of the model. The purpose of this paper is the optimization of the cutting tool life and the cutting speed at the drilling of the stainless steels in terms of the minimum machining cost. A more comprehensive nonlinear programming model to minimize the total cost at the drilling of a stainless steel is developed in this paper. The optimum tool life and the associated tool speed are obtained by solving this model. The results can be taken into consideration in the educational studies and in the theoretical technical research. They can be implemented in the manufacturing activity.

2015 ◽  
Vol 809-810 ◽  
pp. 63-68 ◽  
Author(s):  
Marius Iacob ◽  
Ovidiu Blăjină ◽  
Aurelian Vlase

In the specialized literature the cost of the machining process has been analyzed using a number of approaches and varying degrees of simplification to determine the optimum tool life and the tool speed. The accuracy of prediction is dependent on the degree of sophistication of the model. The purpose of this paper is the optimization of the cutting tool life and the cutting speed at the drilling of the stainless steels in terms of the minimum machining cost. A more comprehensive nonlinear programming model to minimize the total cost at the drilling of a stainless steel is developed in this paper. The optimum tool life and the associated tool speed are obtained by solving this model. The results can be taken into consideration in the educational studies and in the theoretical technical research. They can be implemented in the manufacturing activity.


2013 ◽  
Vol 837 ◽  
pp. 234-238
Author(s):  
Aurelian Vlase ◽  
Ovidiu Blăjină ◽  
Vlad Darie

In the specialized literature the cost of the machining process has been analyzed using a number of approaches and varying degrees of simplification to determine the optimum tool life and the tool speed. The accuracy of prediction is dependent on the degree of sophistication of the model. The purpose of this paper is the optimization of the cutting tool life and the cutting speed at the drilling of the stainless steels in terms of the minimum machining cost. A more comprehensive nonlinear programming model to minimize the total cost at the drilling of a stainless steel is developed in this paper. The optimum tool life and the associated tool speed are obtained by solving this model. The results can be taken into consideration in the educational studies and in the theoretical technical research. They can be implemented in the manufacturing activity.


2013 ◽  
Vol 837 ◽  
pp. 28-32
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Vlad Darie

The research in the last decade regarding their cutting machinability have highlighted the insufficiency of the data for establishing of the optimum cutting processing conditions and the optimum cutting regime. The purpose of this paper is the optimization of the tool life and the cutting speed at the drilling of the stainless steels in terms of the maximum productivity. A nonlinear programming model to maximize the productivity at the drilling of a stainless steel is developed in this paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the proposed mathematical model. The use of this productivity model allows greater accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The obtained results can be used in production activity, in order to increase the productivity of the stainless steels machining. Finally the paper suggests new research directions for the specialists interested in this field.


Author(s):  
Patricia Mun˜oz de Escalona ◽  
Paul G. Maropoulos

During a machining process, cutting parameters must be taken into account, since depending on them the cutting edge starts to wear out to the point that tool can fail and needs to be change, which increases the cost and time of production. Since wear is a negative phenomenon on the cutting tool, due to the fact that tool life is reduced, it is important to optimize the cutting variables to be used during the machining process, in order to increase tool life. This research is focused on the influence of cutting parameters such as cutting speed, feed per tooth and axial depth of cut on tool wear during a face milling operation. The Taguchi method is applied in this study, since it uses a special design of orthogonal array to study the entire parameters space, with only few numbers of experiments. Also a relationship between tool wear and the cutting parameters is presented. For the studies, a martensitic 416 stainless steel was selected, due to the importance of this material in the machining of valve parts and pump shafts.


2013 ◽  
Vol 371 ◽  
pp. 18-22
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Vlad Darie

The problems related to the wear of the cutting tools wear and the tools life at the machining of the stainless steels are very important due to the chemical and mechanical characteristics of these steels [1]. Over time the research have studied the causes which produce the cutting tool wear and the methods to improve the cutting tools durability, either by creating new types of materials for tools, either by the choice of tools geometric parameters and cutting regime [2, 3]. The purpose of this paper is the optimization of the cutting tool life and the cutting speed at the drilling of the stainless steels, in terms of the global indicator of the minimum machining cost.


2015 ◽  
Vol 760 ◽  
pp. 433-438 ◽  
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Marius Iacob

The research in the last decade regarding their cutting machinability have highlighted the insufficiency of the data for establishing of the optimum cutting processing conditions and the optimum cutting regime. The purpose of this paper is the optimization of the tool life and the cutting speed at the drilling of the stainless steels in terms of the maximum productivity. A nonlinear programming mathematical model to maximize the productivity at the drilling of a stainless steel is developed in this paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the proposed mathematical model. The use of this productivity model allows greater accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The obtained results can be used in production activity, in order to increase the productivity of the stainless steels machining. Finally the paper suggests new research directions for the specialists interested in this field.


2013 ◽  
Vol 690-693 ◽  
pp. 3359-3364
Author(s):  
Shou Jin Sun ◽  
Milan Brandt ◽  
John P.T. Mo

A higher strength and heat resistance are increasingly demanded from the advanced engineering materials with high temperature applications in the aerospace industry. These properties make machining these materials very difficult because of the high cutting forces, cutting temperature and short tool life present. Laser assisted machining uses a laser beam to heat and soften the workpiece locally in front of the cutting tool. The temperature rise at the shear zone reduces the yield strength and work hardening of the workpiece, which make the plastic deformation of the hard-to-machine materials easier during machining. The state-of-the-art, benefits and challenges in laser assisted machining of metallic materials are summarized in this paper, and the improvement of tool life is discussed in relation to laser power, beam position and machining process parameters.


2011 ◽  
Vol 223 ◽  
pp. 554-563 ◽  
Author(s):  
Noemia Gomes de Mattos de Mesquita ◽  
José Eduardo Ferreira de Oliveira ◽  
Arimatea Quaresma Ferraz

Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have direct influence on production. The premature removal of the cutting tool results in high cost of machining, since the parcel relating to the cost of the cutting tool increases. On the other hand the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use, when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal.


Author(s):  
Yu-Cheng Lin ◽  
Toly Chen

Owing to the cost constraint, it is difficult to incorporate all critical features into a single product design. To deal with this issue, analytic hierarchy process is a well-known method that compares the relative priorities of critical features. This study aims to illustrate that the judgment of a designer can be used to generate multiple diversified product designs. To this end, this study proposed a multibelief analytic hierarchy process and nonlinear programming approach. In the proposed methodology, a decision maker’s judgment matrix is decomposed into several single-belief judgment matrices that are more consistent than the original judgment matrix and represent diversified points of view regarding the relative priorities of factors. To this end, a nonlinear programming model is established and optimized. The proposed methodology was applied to a smart backpack design problem. It was concluded that a designer’s judgment was often inconsistent, which was ignored in the conventional analytic hierarchy process method but could be employed to diversify product designs.


2015 ◽  
Vol 9 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Hirohisa Narita ◽  

An evaluation system for calculating equivalent CO2emissions and machining costs is developed using an activity-based model. The system can evaluate a machining process from an NC program, workpiece information, and cutting tool information, and it can then calculate accurate equivalent CO2emissions and the machining cost. The cutting speed of an end mill operation is evaluated in terms of the equivalent CO2emission and the machining cost. Based on the results, optimal cutting conditions are determined to minimize the equivalent CO2emissions and the machining cost to the extent possible.


Sign in / Sign up

Export Citation Format

Share Document