Reference Flow Injection Analysis of Trace Amounts of Tannin with Inhibited Kinetic Spectrophotometric Detection

2013 ◽  
Vol 838-841 ◽  
pp. 2455-2460
Author(s):  
Lan Yu

A simple and highly sensitive reference flow injection inhibited kinetic spectrophotometric method is proposed for the determination of trace tannin in tea and wine samples. The method was based on the enhanced sensitivity of cetylpyridinium bromide on the redox reaction between Eosine Y and KBrO3, and on inhibitory effect of tannin on the same reaction in the sulphuric acid medium. The resulting red complex product was stable in sulphuric acidic medium and has a maximum absorption at 540 nm. The linear response range and detection limit are 0.010-0.45 mg L-1and 4.82μg L-1respectively. The sampling frequency was 20 samples per hour. The relative standard deviation for 11 determinations of 0.10mg L-1tannin acid was 1.78% and values of recovery in the rang of 96.7%-107.3%.The proposed method has been successfully used to determine tannin in tea and wine samples. The results obtained were compared with those provided by the FolinDenis method.

2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Jiangman Liu ◽  
Huan Yang ◽  
Yun Zhang ◽  
Min Wu ◽  
Haixiang Zhao ◽  
...  

A sensitive chemiluminescence (CL) method, based on the inhibitory effect of roxithromycin (ROX) on the CL reaction between luminol and dissolved oxygen in a flow-injection system, was first proposed for the determination of ROX at picogram levels. The decrement of CL intensity was linearly proportional to the logarithm of ROX concentrations ranging from 0.1 to 100 pg mL-1, giving the limit of detection (LOD) of 0.03 pg mL-1 (3σ). At a flow rate of 2.0 mL min-1, a complete analytical procedure including sampling and washing could be performed within 0.5 min, with relative standard deviations (RSDs) of less than 5.0% (n=5). The proposed procedure was applied successfully to the determination of ROX in pharmaceutical, human serum, and urine with the recoveries ranging from 90.0 to 110.0%.


2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Liang Wei

A simple, rapid and sensitive method was proposed for online determination of tannic acid in colored tannery wastewater by automatic reference flow injection analysis. Based on the tannic acid reduction phosphotungstic acid to form blue compound in pH 12.38 alkaline solutions, the shade of blue compound is in a linear relation to the content of tannic acid at the point of the maximum absorption peak of 760 nm. The optimal experimental conditions had been obtained. The linear range of the proposed method was between 200 μgL−1to 80 mgL−1and the detection limit was 0.58 μgL−1. The relative standard deviation was 3.08% and 2.43% for 500 μgL−1and 40 mgL−1of tannic acid standard solution, respectively, (n=10). The method had been successfully applied to determination of tannic acid in colored tannery wastewaters and the analytical results were satisfactory.


2008 ◽  
Vol 62 (4) ◽  
Author(s):  
Adem Asan ◽  
Muberra Andac ◽  
Ibrahim Isildak ◽  
Nihat Tinkilic

AbstractA highly sensitive and very simple spectrophotometric flow-injection analysis (FIA) method for the determination of iron(III) at low concentration levels is presented. The method is based on the measurement of absorbance intensity of the red complex at 410 nm formed by iron(III) and diphenylamine-4-sulfonic acid sodium salt (DPA-4-SA). It is a simple, highly sensitive, fast, and low cost alternative method using the color developing reagent DPA-4-SA in acetate buffer at pH 5.50 and the flow-rate of 1 mL min−1 with the sample throughput of 60 h−1. The method provided a linear determination range between 5 μg L−1 and 200 μg L−1 with the detection limit (3S) of 1 μg L−1 of iron(III) using the injection volume of 20 μL. FIA variables influencing the system performance were optimized. The amount of iron(III) and total iron in river and seawater samples was successfully determined. Repeatability of the measurements was satisfactory at the relative standard deviation of 3.5 % for 5 determinations of 10 μg L−1 iron(III). The accuracy of the method was evaluated using the standard addition method and checked by the analysis of the certified material Std Zn/Al/Cu 43 XZ3F.


2009 ◽  
Vol 6 (4) ◽  
pp. 1267-1273
Author(s):  
Reyhaneh Rahnama Kozani ◽  
Ferydoun Ashrafi ◽  
Masuod Khalilnezhad ◽  
Mohammad Reza Jamali

A simple, sensitive, rapid and reliable method has been developed for spectrophotometric determination of iodide based on its inhibition effect on the redox reaction between bromate and hydrochloric acid. The decolorization of methyl orange by the reaction products was used to monitor the reaction spectrophotometrically at 525 nm. The variables affecting the rate of the reaction were investigated. Under the optimum conditions, the limit of detection is 1.5 × 10-7mol L-1and calibration range is 2.0 × 10-6–1.3 × 10-4mol L-1of iodide. The linearity range of the calibration graph is depends on bromate concentration. The relative standard deviation of ten-replication determination of 8.2 × 10-5mol L-1iodide was 1.4%. The proposed method was applied to the determination of iodide in natural water samples with satisfactory results.


2010 ◽  
Vol 7 (3) ◽  
pp. 727-732
Author(s):  
Mohsen Keyvanfard

A new, simple, inexpensive and fast kinetic spectrophotometric method was developed for the determination of trace amounts of resorcinol over the range of 0.02-0.80 μg/mL. The method is based on the inhibitory effect of resorcinol on the formaldehyde catalyzed oxidation reaction of of cresyl violet by bromate in acidic media is reported. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of cresyl violet at 596 nm with a fixed-time 0.5–2.5 min from initiation of the reaction.The detection limit is 0.017 μg/mL and relative standard deviation of 0.1 and 0.5 μg/mL resorcinol for six replicate measurements was 2.6 and 2.9 %, respectively. The method was applied to the determination of resorcinol in water samples.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Masoud Reza Shishehbore ◽  
Ali Sheibani ◽  
Masoumeh Eslami

A simple, selective, and inexpensive kinetic method was developed for the determination of hydrazine based on its inhibitory effect on the thionine-bromate system in sulfuric acid media. The reaction was monitored spectrophotometrically at 601 nm by a fixed time method. The effect of different parameters such as concentration of reactants, ionic strength, temperature, and time on the rate of reaction was investigated, and the optimum conditions were obtained. Under optimum conditions, the calibration curve was linear in the concentration range from 0.8–23.0 μg mL−1of hydrazine, and the detection limit of the method was 0.22 μg mL−1. The relative standard deviation for five replicate determinations of 1.0 μg mL−1of hydrazine was 0.74%. The potential of interfering effect of foreign species on the hydrazine determination was studied. The proposed method was successfully applied for the determination of hydrazine in different water samples.


2010 ◽  
Vol 7 (4) ◽  
pp. 1591-1597
Author(s):  
Mohsen Keyvanfard

A new, simple, sensitive and selective kinetic spectrophotometric method was developed for the determination of trace amounts of phenylhydrazine over the range of 0.02-0.30 μg/mL. The method is based on the inhibitory effect of phenylhydrazine on the oxidation of methyl red by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of methyl red at 518 nm with a fixed-time 0.5–2.0 min from initiation of the reaction..The relative standard deviation of 0.08 and 0.2 μg/mL phenylhydrazine was 1.7 and 2.4%, respectively. The method was applied to the determination of phenylhydrazine in water samples.


2020 ◽  
Vol 13 (1) ◽  
pp. 253-261
Author(s):  
Ashraf M. Taha ◽  
Alaa Eldin Mokhtar Abdel-Hady

A simple and sensitive kinetic spectrophotometric method is described for the determination of ranitidine. The method is based on the inhibiting effect of ranitidine on the rate of oxidation of malachite green (MG+ ) with N-bromosuccinimide (NBS) The oxidation reaction was followed spectrophotometrically by measuring the rate of change of the absorbance of malachite green with time at λ=617nm in the presence of different concentrations of ranitidine using the recommended procedure. Ranitidine can be determined from 0.08 to 2.40 g ml-1 with a linear calibration graph and detection limit of 0.026 g ml-1 . The method was successfully applied for the determination of ranitidine in pure ranitidine samples and in ranitidine tablets. The recovery of the analyzed samples were 97-100% with relative standard deviation, sr (%) =1.14 x 10-4 indicating high accuracy and precision of the suggested method. The interference of various cations and anions in the determination of ranitidine was studied


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Jiajia Wang ◽  
Xijuan Tan ◽  
Xin Li ◽  
Jiangman Liu ◽  
Zhenghua Song

A sensitive chemiluminescence (CL) method for the determination of hesperetin at nanogram levels was first presented. It was based on the inhibitory effect of hesperetin on luminol-dissolved oxygen CL reaction in a flow injection system. The decrements of CL intensity were logarithm over the concentrations of hesperetin in a range of 0.5 to 1000 ng mL−1, with a detection limit of 0.2 ng mL−1 (3σ) and the relative standard deviations lower than 2.1%. At a flow rate of 2.0 mL min−1, the whole determining performance including sampling and washing could be accomplished in 30 s, giving a sampling efficiency of 120 h−1. The proposed method was applied successfully to the direct hesperetin determination in human serum with recoveries from 97.0 to 106.6%, and indirect hesperidin quantification in 2.5 g pericarpium citri reticulatae showing that the content is 8.1±0.2%. The possible CL mechanism of luminol-dissolved oxygen-hesperetin reaction was also discussed in detail.


2010 ◽  
Vol 7 (4) ◽  
pp. 1612-1620 ◽  
Author(s):  
M. Keyvanfard ◽  
N. Abedi

A new, simple, sensitive and selective kinetic spectrophotometric method was developed for the determination of ultra trace amounts of vanadium(V). The method is based on the catalytic effect of vanadium(V) on the oxidation of malachite green oxalate (MG) by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in the absorbance of malachite green oxalate (MG) at 625 nm with a fixed-time method. The decrease in the absorbance of MG is proportional to the concentration of vanadium(V) in the range of 1-100 ng/mL with a fixed time of 0.5-2 min from the initiation of the reaction. The limit of detection is 0.71 ng/mL of vanadium(V). The relative standard deviation for the determination of 5, 30, 50 ng/mL of vanadium(V) was2.5% 2.6%, 2.4% and respectively. The method was applied to the determination of vanadium(V) in water samples.


Sign in / Sign up

Export Citation Format

Share Document