A Simple Water Balance Model of Rubber Tree Plantations under Different Evaporative Demand Regimes

2013 ◽  
Vol 844 ◽  
pp. 20-23
Author(s):  
Jessada Sopharat ◽  
Sayan Sdoodee ◽  
Charlchai Tanavud ◽  
Frederic Gay ◽  
Philippe Thaler

Drought constraints and transpiration of rubber (Hevea brasiliensis) plantations under different evaporative demand regimes were assessed by the simple water balance model. A lump water model, BILJOU (BILan hydrique JOUrnalier), is the daily water balance model. This model requires daily potential evapotranspiration (ETo) and rainfall as input climatic data, also requires site and stand parameters are maximum extractable soil water and leaf area index (LAI). The study was carried out two sites; namely Songkhla and Chachoengsao province, Thailand, traditional and new plantation area, respectively. The calibration of this model was done with sap flow measurements. Soil water derived by tensiometer for Songkhla and soil sampling for Chachoengsao were used to validate the model. Under non limiting soil water and full canopy, transpiration of rubber was influenced by evaporative demand. Consistently, under limited soil water represented as threshold of relative extractable water (REWc < 0.4), transpiration was influenced by REW. In the new plantation area; Chachoengsao, drought constraints were evident annually from the beginning of senescence until the new accomplished flushing; December to June. However, at Songkhla site, transpiration and soil water was mainly driven by evaporative demand. And the limitation of soil water represented shortly during the plateau stage of LAI.

2018 ◽  
Vol 17 (1) ◽  
pp. 170176 ◽  
Author(s):  
Saskia L. Noorduijn ◽  
Masaki Hayashi ◽  
Getachew A. Mohammed ◽  
Aaron A. Mohammed

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 143
Author(s):  
Marwan Kheimi ◽  
Shokry M. Abdelaziz

A new daily water balance model is developed and tested in this paper. The new model has a similar model structure to the existing probability distributed rainfall runoff models (PDM), such as HyMOD. However, the model utilizes a new distribution function for soil water storage capacity, which leads to the SCS (Soil Conservation Service) curve number (CN) method when the initial soil water storage is set to zero. Therefore, the developed model is a unification of the PDM and CN methods and is called the PDM–CN model in this paper. Besides runoff modeling, the calculation of daily evaporation in the model is also dependent on the distribution function, since the spatial variability of soil water storage affects the catchment-scale evaporation. The generated runoff is partitioned into direct runoff and groundwater recharge, which are then routed through quick and slow storage tanks, respectively. Total discharge is the summation of quick flow from the quick storage tank and base flow from the slow storage tank. The new model with 5 parameters is applied to 92 catchments for simulating daily streamflow and evaporation and compared with AWMB, SACRAMENTO, and SIMHYD models. The performance of the model is slightly better than HyMOD but is not better compared with the 14-parameter model (SACRAMENTO) in the calibration, and does not perform as well in the validation period as the 7-parameter model (SIMHYD) in some areas, based on the NSE values. The linkage between the PDM–CN model and long-term water balance model is also presented, and a two-parameter mean annual water balance equation is derived from the proposed PDM–CN model.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. K. Jaiswal ◽  
Sohrat Ali ◽  
Birendra Bharti

AbstractThe design of water resource structures needs long-term runoff data which is always a problem in developing countries due to the involvement of huge cost of operation and maintenance of gauge discharge sites. Hydrological modelling provides a solution to this problem by developing relationship between different hydrological processes. In the past, several models have been propagated to model runoff using simple empirical relationships between rainfall and runoff to complex physical model using spatially distributed information and time series data of climatic variables. In the present study, an attempt has been made to compare two conceptual models including TANK and Australian water balance model (AWBM) and a physically distributed but lumped on HRUs scale SWAT model for Tandula basin of Chhattisgarh (India). The daily data of reservoirs levels, evaporation, seepage and releases were used in a water balance model to compute runoff from the catchment for the period of 24 years from 1991 to 2014. The rainfall runoff library (RRL) tool was used to set up TANK model and AWBM using auto and genetic algorithm, respectively, and SWAT model with SWATCUP application using sequential uncertainty fitting as optimization techniques. Several tests for goodness of fit have been applied to compare the performance of conceptual and semi-distributed physical models. The analysis suggested that TANK model of RRL performed most appropriately among all the models applied in the analysis; however, SWAT model having spatial and climatic data can be used for impact assessment of change due to climate and land use in the basin.


2006 ◽  
Vol 81 (3) ◽  
pp. 335-357 ◽  
Author(s):  
Dirk Raes ◽  
Sam Geerts ◽  
Emmanuel Kipkorir ◽  
Joost Wellens ◽  
Ali Sahli

2015 ◽  
Vol 30 (3) ◽  
pp. 463-478 ◽  
Author(s):  
João Pedro Nunes ◽  
Maruxa Malvar ◽  
Akli Ait Benali ◽  
María Ermitas Rial Rivas ◽  
Jan Jacob Keizer

Sign in / Sign up

Export Citation Format

Share Document