Remote Sense Image Classification Based on CART Algorithm

2013 ◽  
Vol 864-867 ◽  
pp. 2782-2786
Author(s):  
Bao Hua Yang ◽  
Shuang Li

This papers deals with the study of the algorithm of classification method based on decision tree for remote sensing image. The experimental area is located in the Xiangyang district, the data source for the 2010 satellite images of SPOT and TM fusion. Moreover, classification method based on decision tree is optimized with the help of the module of RuleGen and applied in regional remote sensing image of interest. The precision of Maximum likelihood ratio is 95.15 percent, and 94.82 percent for CRAT. Experimental results show that the classification method based on classification and regression tree method is as well as the traditional one.

2020 ◽  
Vol 39 (5) ◽  
pp. 6073-6087
Author(s):  
Meltem Yontar ◽  
Özge Hüsniye Namli ◽  
Seda Yanik

Customer behavior prediction is gaining more importance in the banking sector like in any other sector recently. This study aims to propose a model to predict whether credit card users will pay their debts or not. Using the proposed model, potential unpaid risks can be predicted and necessary actions can be taken in time. For the prediction of customers’ payment status of next months, we use Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification and Regression Tree (CART) and C4.5, which are widely used artificial intelligence and decision tree algorithms. Our dataset includes 10713 customer’s records obtained from a well-known bank in Taiwan. These records consist of customer information such as the amount of credit, gender, education level, marital status, age, past payment records, invoice amount and amount of credit card payments. We apply cross validation and hold-out methods to divide our dataset into two parts as training and test sets. Then we evaluate the algorithms with the proposed performance metrics. We also optimize the parameters of the algorithms to improve the performance of prediction. The results show that the model built with the CART algorithm, one of the decision tree algorithm, provides high accuracy (about 86%) to predict the customers’ payment status for next month. When the algorithm parameters are optimized, classification accuracy and performance are increased.


2020 ◽  
Vol 14 (2) ◽  
pp. 273-284
Author(s):  
Reni Pratiwi ◽  
Memi Nor Hayati ◽  
Surya Prangga

Decision tree is a algorithm used as a reasoning procedure to get answers from problems are entered. Many methods can be used in decision trees, including the C5.0 algorithm and Classification and Regression Tree (CART). C5.0 algorithm is a non-binary decision tree where the branch of tree can be more than two, while the CART algorithm is a binary decision tree where the branch of tree consists of only two branches. This research aims to determine the classification results of the C5.0 and CART algorithms and to determine the comparison of the accuracy classification results from these two methods. The variables used in this research are the average monthly income (Y), employment (X1), number of family members (X2), last education (X3) and gender (X4). After analyzing the results obtained that the accuracy rate of C5.0 algorithm is 79,17% while the accuracy rate of CART is 84,63%. So it can be said that the CART method is a better method in classifying the average income of the people of Teluk Baru Village in Muara Ancalong District in 2019 compared to the C5.0 algorithm method.   Keywords: C5.0 Algorithm, CART, Classification, Decision Tree.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1578 ◽  
Author(s):  
Guanghui Hu ◽  
Weizhi Zhang ◽  
Hong Wan ◽  
Xinxin Li

In pedestrian inertial navigation, multi-sensor fusion is often used to obtain accurate heading estimates. As a widely distributed signal source, the geomagnetic field is convenient to provide sufficiently accurate heading angles. Unfortunately, there is a broad presence of artificial magnetic perturbations in indoor environments, leading to difficulties in geomagnetic correction. In this paper, by analyzing the spatial distribution model of the magnetic interference field on the geomagnetic field, two quantitative features have been found to be crucial in distinguishing normal magnetic data from anomalies. By leveraging these two features and the classification and regression tree (CART) algorithm, we trained a decision tree that is capable of extracting magnetic data from distorted measurements. Furthermore, this well-trained decision tree can be used as a reject gate in a Kalman filter. By combining the decision tree and Kalman filter, a high-precision indoor pedestrian navigation system based on a magnetically assisted inertial system is proposed. This system is then validated in a real indoor environment, and the results show that our system delivers state-of-the-art positioning performance. Compared to other baseline algorithms, an improvement of over 70% in the positioning accuracy is achieved.


2021 ◽  
Vol 25 (4) ◽  
pp. 929-948
Author(s):  
Shuang Yu ◽  
Xiongfei Li ◽  
Hancheng Wang ◽  
Xiaoli Zhang ◽  
Shiping Chen

In classification, a decision tree is a common model due to its simple structure and easy understanding. Most of decision tree algorithms assume all instances in a dataset have the same degree of confidence, so they use the same generation and pruning strategies for all training instances. In fact, the instances with greater degree of confidence are more useful than the ones with lower degree of confidence in the same dataset. Therefore, the instances should be treated discriminately according to their corresponding confidence degrees when training classifiers. In this paper, we investigate the impact and significance of degree of confidence of instances on the classification performance of decision tree algorithms, taking the classification and regression tree (CART) algorithm as an example. First, the degree of confidence of instances is quantified from a statistical perspective. Then, a developed CART algorithm named C_CART is proposed by introducing the confidence of instances into the generation and pruning processes of CART algorithm. Finally, we conduct experiments to evaluate the performance of C_CART algorithm. The experimental results show that our C_CART algorithm can significantly improve the generalization performance as well as avoiding the over-fitting problem to a certain extend.


Author(s):  
Amit Kumar Verma ◽  
P. K. Garg ◽  
K. S. Hari Prasad ◽  
V. K. Dadhwal

Image classification is a compulsory step in any remote sensing research. Classification uses the spectral information represented by the digital numbers in one or more spectral bands and attempts to classify each individual pixel based on this spectral information. Crop classification is the main concern of remote sensing applications for developing sustainable agriculture system. Vegetation indices computed from satellite images gives a good indication of the presence of vegetation. It is an indicator that describes the greenness, density and health of vegetation. Texture is also an important characteristics which is used to identifying objects or region of interest is an image. This paper illustrate the use of decision tree method to classify the land in to crop land and non-crop land and to classify different crops. In this paper we evaluate the possibility of crop classification using an integrated approach methods based on texture property with different vegetation indices for single date LISS IV sensor 5.8 meter high spatial resolution data. Eleven vegetation indices (NDVI, DVI, GEMI, GNDVI, MSAVI2, NDWI, NG, NR, NNIR, OSAVI and VI green) has been generated using green, red and NIR band and then image is classified using decision tree method. The other approach is used integration of texture feature (mean, variance, kurtosis and skewness) with these vegetation indices. A comparison has been done between these two methods. The results indicate that inclusion of textural feature with vegetation indices can be effectively implemented to produce classifiedmaps with 8.33% higher accuracy for Indian satellite IRS-P6, LISS IV sensor images.


Sign in / Sign up

Export Citation Format

Share Document