Research on the Polymer Ultrasonic Plastification

2009 ◽  
Vol 87-88 ◽  
pp. 542-549 ◽  
Author(s):  
Bing Yan Jiang ◽  
Jian Liang Hu ◽  
Wang Qing Wu ◽  
Shu Ye Pan

Melt flow properties in micro cavity play an important role in the micro injection molding (MIM). Based on the point view of improving the melting plastification quality, this study focus on solving the problem of melt filling difficulty in micro cavity of MIM by introducing the ultrasonic vibration field into the polymer plastification process. This paper studied the polymer’s ultrasonic plasitfication process by Theoretical analysis and Polymer ultrasonic plastification experiment.

2013 ◽  
Vol 562-565 ◽  
pp. 1380-1386
Author(s):  
Jian Zhuang ◽  
Da Ming Wu ◽  
Ya Jun Zhang ◽  
Lin Wang ◽  
Xiong Wei Wang ◽  
...  

The flow behaviors for polymer melt at the filling stage in micro injection molding are different from those in conventional injection molding due to the miniaturization of plastic parts. This paper focuses on the study of the effects of three main influencing factors, including the microscale viscosity and wall slip, on melt filling flow in microscale neglected those in conventional injection molding process. The theoretical models and the interrelation of these factors in microscale channels were constructed by means of the model correction method. Then, the micro melt flow behaviors were investigated with comparisons of the available experimental data. The results indicate that the dimensions affect the shear rates and viscous dissipation, which in turn affects the apparent viscosity. Finally, the conclusion is that the melt flow behaviors in microchannels are different from those in macrochannels owing to these significant influencing factors.


2017 ◽  
Vol 132 ◽  
pp. 1-12 ◽  
Author(s):  
Xavier Sánchez-Sánchez ◽  
Marcelo Hernández-Avila ◽  
L.E. Elizalde ◽  
Oscar Martínez ◽  
Inés Ferrer ◽  
...  

2015 ◽  
Vol 54 (28) ◽  
pp. 8399 ◽  
Author(s):  
Zhongjun Qiu ◽  
Xue Yang ◽  
Hui Zheng ◽  
Shan Gao ◽  
Fengzhou Fang

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 965 ◽  
Author(s):  
Nguyen Truong Giang ◽  
Pham Son Minh ◽  
Tran Anh Son ◽  
Tran Minh The Uyen ◽  
Thanh-Hai Nguyen ◽  
...  

In the injection molding field, the flow of plastic material is one of the most important issues, especially regarding the ability of melted plastic to fill the thin walls of products. To improve the melt flow length, a high mold temperature was applied with pre-heating of the cavity surface. In this paper, we present our research on the injection molding process with pre-heating by external gas-assisted mold temperature control. After this, we observed an improvement in the melt flow length into thin-walled products due to the high mold temperature during the filling step. In addition, to develop the heating efficiency, a flow focusing device (FFD) was applied and verified. The simulations and experiments were carried out within an air temperature of 400 °C and heating time of 20 s to investigate a flow focusing device to assist with external gas-assisted mold temperature control (Ex-GMTC), with the application of various FFD types for the temperature distribution of the insert plate. The heating process was applied for a simple insert model with dimensions of 50 mm × 50 mm × 2 mm, in order to verify the influence of the FFD geometry on the heating result. After that, Ex-GMTC with the assistance of FFD was carried out for a mold-reading process, and the FFD influence was estimated by the mold heating result and the improvement of the melt flow length using acrylonitrile butadiene styrene (ABS). The results show that the air sprue gap (h) significantly affects the temperature of the insert and an air sprue gap of 3 mm gives the best heating rate, with the highest temperature being 321.2 °C. Likewise, the actual results show that the height of the flow focusing device (V) also influences the temperature of the insert plate and that a 5 mm high FFD gives the best results with a maximum temperature of 332.3 °C. Moreover, the heating efficiency when using FFD is always higher than without FFD. After examining the effect of FFD, its application was considered, in order to improve the melt flow length in injection molding, which increased from 38.6 to 170 mm, while the balance of the melt filling was also clearly improved.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Seong Ying Choi ◽  
Nan Zhang ◽  
J. P. Toner ◽  
G. Dunne ◽  
Michael D. Gilchrist

Vacuum venting is a method proposed to improve feature replication in microparts that are fabricated using micro-injection molding (MIM). A qualitative and quantitative study has been carried out to investigate the effect of vacuum venting on the nano/microfeature replication in MIM. Anodized aluminum oxide (AAO) containing nanofeatures and a bulk metallic glass (BMG) tool mold containing microfeatures were used as mold inserts. The effect of vacuum pressure at constant vacuum time, and of vacuum time at constant vacuum pressure on the replication of these features is investigated. It is found that vacuum venting qualitatively enhances the nanoscale feature definition as well as increases the area of feature replication. In the quantitative study, higher aspect ratio (AR) features can be replicated more effectively using vacuum venting. Increasing both vacuum pressure and vacuum time are found to improve the depth of replication, with the vacuum pressure having more influence. Feature orientation and final sample shape could affect the absolute depth of replication of a particular feature within the sample.


Sign in / Sign up

Export Citation Format

Share Document