Method for Analysis of Dynamic and Strength in Internal Combustion Engine Crankshaft

2013 ◽  
Vol 871 ◽  
pp. 50-55
Author(s):  
Ben Bao Han ◽  
Hong Xin Zhang

Dynamic and strength analysis of crankshaft is the basis of structural design. The paper discussed the dynamic simulation method using software of ADAMS, at same time compared the three traditional stress analysis methods: simply supported beam or continuous beam model, single crank model and overall contact model. A new method was proposed, firstly to establish the oil film model with Reynolds equation and obtain the oil film stiffness, then to treat it as the equivalent stiffness of spring impacting on shaft neck, lastly to create the finite element model of the whole crankshaft. The model will be more precisely reflect the real conditions and can be use to the optimization of crankshaft.

Author(s):  
Sergey Yu. Fialko

A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1010-1013
Author(s):  
Ya Xiong Du ◽  
Shu Li ◽  
Kai Guo

With the development of advanced composites technology, composites instead of traditional aluminum alloy, will be widely used to build full-size aircraft windshield structure in the aviation field. The finite element model of commercial aircraft composite windshield is established in the environment of Msc.Patran / Nastran. And based on Tasi-Wu failure criterion, the strength of windshield structure under typical load pressure is predicted and analyzed during failure processes. It shows that composite windshield can work better through rational design according to the analysis result.


2014 ◽  
Vol 889-890 ◽  
pp. 3-8 ◽  
Author(s):  
Xiao Chun Shi ◽  
Wei Dong He ◽  
Jun Hua Bao

In order to improve the bearing capacity and service life of the locomotive traction gears, modern design methods are used to optimize the gear tooth curves and their parameters. The simulation of the involute tooth curves and tooth root transition curves of the traction gears are build by Ansys Parametric Design Language (APDL). It can accurately describe the finite element model with complex geometries. It laid a solid foundation for the tooth strength analysis and modification.


2014 ◽  
Vol 494-495 ◽  
pp. 337-340 ◽  
Author(s):  
Yu Wen Li ◽  
Jian Kang Wei ◽  
Jin Zhang

Based on studying the existing electric wheelchairs for disabled are not well adapted to a variety of road conditions, broken through the structure of traditional wheelchairs, a design proposal that can make electric wheelchair achieve the function of climbing stairs and walking was putted forward and a novel mechanism was designed. The mechanism can make the crawler chassis and the wheels of wheelchair switch when needed, and make the wheelchair travel freely and flexible on the ground or on the stairs. The finite element model of the mechanism was built, and the strength analysis was carried out. The strength analysis provide the theoretical basis for the prototype manufacture.


2021 ◽  
Author(s):  
Long Ma ◽  
Ping Ai ◽  
ChuanSheng Xiong

Abstract Aiming at the low simulation accuracy of the numerical simulation method of the joint response of the super-large section underground comprehensive pipeline gallery under the current complicated geological conditions, a numerical simulation method of the joint response of the super-large section underground comprehensive pipe gallery joint response under the complicated geological conditions based on the finite element model was proposed. According to the analysis process for the super-large section underground comprehensive pipe gallery, the viscous boundary of the comprehensive pipe gallery is determined. Additionally, by analyzing soil and structural parameters, the optimal combined dynamic boundary is used as the model boundary. The HSS model is used to describe the constitutive structure of the soil, and by improving the Goodman element to describe the contact surface of the model, the finite element model of the joint response of the comprehensive pipe gallery is constructed. Furthermore, based on the internal force balance and deformation coordination conditions, considering the influence of the deformation shape of the joint joints and the elongation of the prestressed tendons on the finite element model, the response model of the integrated pipe gallery joint is optimized. Experimental results show that the proposed method has higher numerical simulation accuracy.


2011 ◽  
Vol 411 ◽  
pp. 54-58
Author(s):  
Tao Feng ◽  
Xiao Li Jin

Based on the analytical theories of the joint surface, finite element modeling method of two kinds of joint about rails and bolts were studied. The finite element model of the engraving machine is built and its static and dynamic characterization is analyzed by the universal ANSYS. By this way, unreasonable structural design of engraving machine can be conducted, which will provide support for the optimization design of the structure. The correctness of the modeling method of joint surface is confirmed.


2011 ◽  
Vol 120 ◽  
pp. 81-84
Author(s):  
Jian Hua Wang ◽  
Jian Hua ◽  
Chao Li

Fatigue rupture is the major reason of crankshaft parts failure. Traditional fatigue analysis is fairly complicated and causes a great error. The finite element model of s195 engine crankshaft is created under SolidWorks environment, whose static analysis and fatigue analysis is carried out by using Simulation module. Also the vibration character of the crankshaft is calculated through modal analysis. Result shows the fatigue strength of the crankshaft is enough and it will not produce resonance in operation.


2018 ◽  
Vol 166 ◽  
pp. 04001 ◽  
Author(s):  
Zhenzhen Liu ◽  
Zhixiong Chen ◽  
Jin Chen

Aero engine is a kind of thermodynamic machinery, which require have strict aerodynamic load, mechanical load and strong durability, its longevity depends largely on the life of its main components. In this paper, a series of studies are carried out on the strength of fan blades of CFM56 engine, which provide a reference value for improving the reliability of the engine. The finite element model of the engine fan is established by using CATIA’s finite element software.The centrifugal stress distribution of the fan at different speeds and the influence of torque on fans under different speeds are calculated respectively, and the static strength of the fan is checked.


2012 ◽  
Vol 442 ◽  
pp. 281-285
Author(s):  
Na Liu ◽  
Guo Xiang Li ◽  
Shuai Guo Lang ◽  
Yu Ping Hu ◽  
Xiao Ri Liu

This paper established multi-body dynamic model of block-crankshaft system by method of finite element substructure and multi-body dynamics, and carried out the distribution of dynamic stress acting on the crankshaft in a working cycle and on this basis carried out the fatigue strength analysis, then received the fatigue safety coefficient and fatigue life data of each part of the crankshaft.


2011 ◽  
Vol 217-218 ◽  
pp. 1817-1820
Author(s):  
Guo Lin Xu ◽  
Ya Shuang Bai ◽  
De Bin Zhu ◽  
Wen Gang Chen

Light wood-frame structure, as not only has good seismic performance, but also can give full play to its ligneous advantages such as light mass, high tenacity, energy saving and environment protection, is widely applied to low-rise buildings and villas. The rigidity and ductility of shear wall structured by wood-frame are closely related to its sheathing material and the nail layout. In order to give full play to the carrying capacity of the nailed connection nodes, the article adopts the finite element model to compare the stress distributions of sheathings with different nail spacing, and the carrying capacity of the connection at the point of the sheathing is destructed, and also to provide the reasonable value of nail layout and a reference for the actual structural design.


Sign in / Sign up

Export Citation Format

Share Document