Eddy Current Defect Detection of Side Transverse Crack in Railhead by Integrating Experiment with Simulation

2014 ◽  
Vol 875-877 ◽  
pp. 593-598
Author(s):  
Zeng Lu Song ◽  
Tsutomu Yamada ◽  
Hideki Shitara ◽  
Yasushi Takemura

This study investigated the use of an eddy current technique for detecting side transverse cracks in a railhead. Quantitative analysis of defect signals in a railhead with side transverse cracks was realized through actual defect detection and finite-element simulation. In eddy current testing of the railhead, first, the general pattern of variation in the detected signals was obtained for different sizes of cracks via actual defect detection of rail samples. Then, finite-element simulation was used to verify the accuracy of the experimental results and to test the relationships between the detected signals and the size and depth of the cracks. The simulation results show that an extremely linear relation between crack depth and output signals in quantitative length of crack cases. In the results, simulation results can be applied to the analysis of the actual detected data. The eddy-current-defect detection method that combined experiment with simulation was very effective and can be applied in future research.

2014 ◽  
Vol 945-949 ◽  
pp. 1987-1990
Author(s):  
Si Quan Zhang ◽  
Yu Liu ◽  
Hao Jun Xu ◽  
Chang Yin

The structure of conventional bobbin probe was modified to improve the detection sensitivity of defects in metal tube. Based on the results of finite element simulation, several types of modified probes are fabricated and used to detect artificial defects in tube and the defect signals are acquired and analyzed. The simulation and experimental results verified that the modified eddy current probes are more sensitive to non-axial defects than conventional bobbin probe and can improve the reliability of tube inspection.


2021 ◽  
Vol 263 (6) ◽  
pp. 648-652
Author(s):  
Tuo Xing ◽  
Xianhui Li ◽  
Xiaoling Gai ◽  
Zenong Cai ◽  
Xiwen Guan

The monostable acoustic metamaterial is realized by placing a flexible panel with a magnetic proof mass in a symmetric magnetic field. The theoretical model of monostable metamaterials has been proposed. The method of finite element simulation is used to verify the theoretical model. The magnetic force of the symmetrical magnetic field is simplified as the relationship between force and displacement, acting on the mass. The simulation results show that as the external magnetic force increases, the peak sound absorption shifts to low frequencies. The theoretical and finite element simulation results are in good agreement.


Author(s):  
Martin Krause ◽  
Daniel Steinert ◽  
Eric Starke ◽  
Uwe Marschner ◽  
Günther Pfeifer ◽  
...  

Numerous vibrating electromechanical systems miss a rigid connection to the inertial frame. An artificial inertial frame can be generated by a shaker which compensates for vibrations. In this paper we present an encapsulated and perforated unimorph bending plate for this purpose. As basis for system simulation and optimization a new 3-port multi domain network model was derived. An extension of the network allows the simulation of the acoustical behavior inside the capsule. Network parameters are determined using Finite Element simulations. The dynamic behavior of the network model agrees with the Finite Element simulation results up to the first resonance of the system. The network model was verified by measurements on a laboratory setup, too.


2019 ◽  
Vol 30 (5) ◽  
pp. 764-777 ◽  
Author(s):  
Song-lin Nie ◽  
De-kui Xin ◽  
Hui Ji ◽  
Fang-long Yin

This article presents the design and multi-physics coupling analysis of a shear-valve-mode magnetorheological fluid damper with different piston configurations. The finite element model is built to study the effects of the shape of the piston slot and magnetism-insulators at both ends of the piston yoke on the performance of the magnetorheological damper. Particle swarm optimization and finite element simulation are combined to optimize the structural parameters of the magnetorheological damper. The influences of different piston configurations on the magnetic flux density in the working gap, the shear stress, the viscous stress, and the dynamic range are investigated. The simulation results reveal that the magnetorheological damper, in which the corners of the piston slot are chamfered and the edges of the magnetism-insulators are filleted, exhibits a better damping performance. Furthermore, magnetorheological dampers with and without magnetism-insulators are fabricated. The influences of control current, displacement, and velocity on the mechanical performance of the magnetorheological dampers are experimentally investigated, and the experiment results are in accordance with the theoretical derivation and finite element simulation results.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 105-110 ◽  
Author(s):  
Mattia Filippini ◽  
Piergiorgio Alotto ◽  
Gregor Glehn ◽  
Kay Hameyer

Abstract Ferromagnetic poles in a magnetic transmission gear require particular attention during their design process. Usually, during the numerical simulation of these devices the effects of hysteresis for loss estimation are neglected and considered only during post-processing calculations. Since the literature lacks hysteresis models, this paper adopts a homogenized hysteretic model able to include eddy current and hysteresis losses in 2D laminated materials for iron poles. In this article the results related to the hysteresis in a magnetic gear are presented and compared to the non-hysteretic approach.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000483-000487
Author(s):  
Uday S. Goteti ◽  
Francy J. Akkara ◽  
Richard C. Jaeger ◽  
Michael C. Hamilton ◽  
Jeffrey C. Suhling

Packaging-induced die-stresses due to temperature effects on various materials of the package are characterized using piezoresistive van der Pauw stress sensors over a temperature range of −180° C to 80° C. Piezo-resistive coefficients extracted previously are then used to obtain a mapping between change in resistance and corresponding stress at all tested temperatures. The obtained values of stress are compared with finite element simulation results.


2007 ◽  
Vol 339 ◽  
pp. 276-280
Author(s):  
Y.T. Yu ◽  
Wei Zheng Yuan ◽  
D.Y. Qiao

Bifurcation of multi-layer microstructures subjected to thermal loading can be harmful for reliability and stability of MEMS structures. In this paper, three imperfections of geometry, coefficient of thermal expansion and thermal loading were introduced to investigate their effects on structural bifurcation by finite element simulation. Results show that bifurcation is strongly influenced by the imperfections. With larger deviation of imperfections, it results in a decreasing temperature to trigger the bifurcation and a gradual beginning of it.


Sign in / Sign up

Export Citation Format

Share Document