Physical and Mechanical Properties of WC-Co Submicron Powders Using P/M Technique

2014 ◽  
Vol 879 ◽  
pp. 12-15 ◽  
Author(s):  
Ahmad Aswad Mahaidin ◽  
Mohd Asri Selamat ◽  
Samsiah Abdul Manaf ◽  
Talib Ria Jaafar

The properties of WC-Co are greatly improved with the use of submicron powders. However, grain growth tends to occur during the sintering process which causes the properties to deteriorate to some extent. Free carbon and vanadium carbide are added in this study to serve as grain growth inhibitor. The effect of these two materials is evaluated based on WC-Co properties. In this work, the powders are mixed together via wet mixing process, compacted and undergo cold-isostatic pressing (CIP) before the samples are sintered in the temperature range of 1350-1450°C under nitrogen-based atmosphere. The physical and mechanical properties of the WC-Co sintered powders were analysed. Based on the work done, the WC-Co-C has a better properties compared to WC-Co-VC.

2007 ◽  
Vol 280-283 ◽  
pp. 1413-1416 ◽  
Author(s):  
Yong Zheng ◽  
Wen Jun Liu ◽  
Quan Yuan ◽  
Lei Wen ◽  
Wei Hao Xiong

Several Ti(C,N)-based cermets with different grain growth inhibitor were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX). The microstructure and mechanical properties of a cermet as a function of the content of the typical grain growth inhibitors, such as vanadium carbide (VC) and chromium carbide (Cr3C2), was revealed. VC addition could remarkably refine the grains, but it reduced the wetting of the ceramic grains by liquid metal during sintering. Thus it still reduced the performances of the cermet. Cr3C2 addition was found to inhibit grains from growing to lower extent during sintering. However it reduced the wetting of the ceramic grains by liquid metal slightly. Most of chromium element congregated in the rim phase and improved the plasticity of the rim. With Cr3C2 added properly, the performances of the cermets were improved remarkably.


2021 ◽  
Vol 1035 ◽  
pp. 752-758
Author(s):  
Li Bo Guo ◽  
Jun Chao He ◽  
Guo Ping Li ◽  
Lian Wu Yan

TiC-high manganese steel-bonded carbide was prepared by powder metallurgy method with varied Mo2C content (0, 2.5%, 5%, 7.5% and 10% respectively), and the effects of Mo2C addition on the microstructure and mechanical properties of the fabricated cermets were studied. The microstructures of the fabricated cermets were observed and analyzed by scanning electron microscope (SEM), and the physical and mechanical properties of the cermets were also tested. The results show that the microstructure of the cermet without Mo2C additive was finer than that of the cermets with 2.5% and 5% Mo2C addition, though Mo2C was an effective grain growth inhibitor of TiC- and/or TiCN-based refractory materials because of low inherent solubility of TiC in Fe binder. An interesting phenomenon was also found that black core-gray rim was observed in the microstructure of the cermet without Mo2C addition. The microstructure of the fabricated cermets was fine with the increase of Mo2C content. The results also show that the relative density and hardness of the cermet increased monotonously with the increase of Mo2C content, hence, the transverse rupture strength (TRS) and impact toughness (IM) of the fabricated cermets increased first and then decreased, and the TRS and IM reached the maximum valve of 2189 MPa and 11.7 J/cm2 when Mo2C content was 7.5% and 5% respectively.


2013 ◽  
Vol 320 ◽  
pp. 281-286 ◽  
Author(s):  
Hao Yu ◽  
Wan Ni Li ◽  
Xian Quan Jiang ◽  
Peng He Jiao

The ultrafine WC-10%Co cemented carbides were prepared by vacuum sintering processing. To inhibit the growth of WC grains during sintering, single VC, TaC and NbC were used as inhibitors. Effects of VC, TaC and NbC as grain growth inhibitor on the microstructure and properties of ultrafine WC-10%Co cemented carbides were investigated with different kinds of testing methods. With the transformation of doped inhibitors content, the results show that VC, TaC and NbC additions can refine the WC grains, and increase the mechanical properties of the WC-10%Co cemented carbides, respectively. And the efficiency of these three kinds of inhibitors to limit gain size has been compared after sintering for 1.5h at 1 400 °C.


2012 ◽  
Vol 535-537 ◽  
pp. 783-786
Author(s):  
Yan Wu ◽  
Hai Xia Xin ◽  
Yu Chun Zhai

(W,Ti)C-10%Co system cermets doped with Ta, Nb or V grain growth inhibitor were prepared in this work. The effect of Ta, Nb and V on the microstructure and mechanical properties of (W0.8783Ti0.0976VB0.0242)C-10%Co systems was investigated. The results show that the three elements play an important role on the WC grain growth and shape; the cermets appeared uniformly distributed as whiskers or thin platelets. V results in the hardest material, Ta causes the material to become harder compared with (W0.9Ti0.1)C-10%Co cermets. But the hardness of cermets with Nb addition decrease because of the increasing of porosity.


2019 ◽  
Vol 41 (1) ◽  
pp. 1-1
Author(s):  
Iqra Zubair Awan Iqra Zubair Awan

This is a brief review of the important phenomena of recovery, recrystallization as well as grain-growth. The three mentioned phenomena are the mechanisms by which metals and alloys fix the structural damage introduced by the mechanical deformation and, as a consequence, in the physical and mechanical properties. These rehabilitation mechanisms are thermally activated. For this process, the materials have to be heated and any such heat-treatment is meant to reduce deformation-induced break is termed annealing. Other or different heat-treatments lead to recovery and recrystallization. It is rather strange that, though these phenomena are extremely important in metallurgical science and engineering, not so much work has been done as that in corrosion and shape memory technologies. An attempt has been made here to summarize all important aspects of these phenomena for the benefits of students of metallurgy, chemistry and solid state physics.


2015 ◽  
Vol 1125 ◽  
pp. 401-405
Author(s):  
Mohamed M. Aboras ◽  
Andanastuti Muchtar ◽  
Noor Faeizah Amat ◽  
Che Husna Azhari ◽  
Norziha Yahaya

The demand for tetragonal zirconia as a dental restorative material has been increasing because of its excellent mechanical properties and resemblance to natural tooth color, as well as its excellent biological compatibility. Cerium oxide (CeO2) has been added to yttria-stabilized zirconia (Y-TZP), and studies have demonstrated that the stability of the tetragonal phase can be significantly improved. Y-TZP with 5wt% CeO2 as a second stabilizer was developed via colloidal process, followed by a suitable sintering process. According to the literature, the sintering process is the most crucial stage in ceramic processing to obtain the most homogeneous structure with high density and hardness. This study aims to investigate the effect of sintering temperature on the mechanical properties of nanostructured ceria–zirconia fabricated via colloidal processing and slip casting process with cold isostatic pressing (CIP). Twenty-five pellet specimens were prepared from ceria–zirconia with 20 nm particle size. CeO2 nanopowder was mixed with Y-TZP nanopowder via colloidal processing. The consolidation of the powder was done via slip casting followed by CIP. The samples were divided into five different sintering temperatures with. Results from FESEM, density and hardness analyses demonstrated statistically significant increase in density and hardness as the sintering temperature increased. The hardness increased from 4.65 GPa to 14.14 GPa, and the density increased from 4.70 to 5.97 (g/cm3) as the sintering temperature increased without changing the holding time. Sintering Ce-Y-TZP at 1600 °C produced samples with homogenous structures, high hardness (14.14 GPa), and full densification with 98% of the theoretical density.


2018 ◽  
Vol 24 (S1) ◽  
pp. 2300-2301
Author(s):  
C. G. Garay-Reyes ◽  
M. A. Ruiz-Esparza-Rodriguez ◽  
I. Estrada Guel ◽  
S. E. Hernandez-Martinez ◽  
J.L. Hernandez-Rivera ◽  
...  

2013 ◽  
Vol 423-426 ◽  
pp. 720-724
Author(s):  
Jian Bing Cheng ◽  
Si Qin Pang ◽  
Xi Bin Wang ◽  
Qi Xun Yu

By using the method of low pressure sintering, both of adding and not adding grain growth inhibitor of WC-Co ultra-fine cemented carbide cutting inserts were prepared, tool life tests of continuous cutting superalloy GH2132 were carried out, respectively. ZEISS continuous zoom stereo microscope and microphotograph system were used to observe flank surface wear morphology of the cutting inserts, and analysis the topography and elements of central wear region of flank surface by X-ray energy dispersive spectrometry and scanning electron microscope. The results show that the main wear mechanism of ultrafine cemented carbide cutting inserts is adhesive wear, and the wear resistance of ultrafine cemented carbide cutting inserts that added grain growth inhibitor is superior to no grain growth inhibitor, adding grain growth inhibitor helps increase the resistance of abrasive wear, adhesive wear and oxidative wear as well as diffusive wear of cutting inserts).


Sign in / Sign up

Export Citation Format

Share Document