Effect of Sulfate Concentration on Biohydrogen Production by Enriched Anaerobic Sludge

2014 ◽  
Vol 884-885 ◽  
pp. 433-436 ◽  
Author(s):  
Bo Wang ◽  
Ya Nan Yin ◽  
Rong Cheng ◽  
Qiong Zhang ◽  
Liang Wang ◽  
...  

The effect of SO2-4 concentration ranging from 0 to 10 g/L on fermentative hydrogen production by enriched anaerobic sludge was investigated using glucose as substrate at 35°C and initial pH 7.0. The experimental results showed that the hydrogen yield increased with increasing SO2-4 concentration from 0 to 0.05 g/L. The maximum maximum hydrogen yield of 272.2 mL/g glucose were obtained at the SO2-4 concentration of 0.05 g/L. The average hydrogen production rate increased with increasing SO2-4 concentration from 0 to 0.1 g/L and the maximum average hydrogen production rate of 8.4 mL/h was obtained at the SO2-4 concentration of 0.1 g/L. The Han-Levenspiel model could describe the effect of SO2-4 concentration on average hydrogen production rate successfully.

2006 ◽  
Vol 54 (9) ◽  
pp. 95-103 ◽  
Author(s):  
C. Li ◽  
T. Zhang ◽  
H.H.P. Fang

Fermentative hydrogen production from a synthetic wastewater containing 10 g/L of sucrose was studied in two upflow reactors at 26°C for 400 days. One reactor was filled with packing rings (RP) and the other was packing free (RF). The effect of hydraulic retention time (HRT) from 2 h to 24 h was investigated. Results showed that, under steady state, the hydrogen production rate significantly increased from 0.63 L/L/d to 5.35 L/L/d in the RF when HRT decreased from 24 h to 2 h; the corresponding rates were 0.56 L/L/d to 6.17 L/L/d for the RP. In the RF, the hydrogen yield increased from 0.96 mol/mol-sucrose at 24 h of HRT to the maximum of 1.10 mol/mol-sucrose at 8 h of HRT, and then decreased to 0.68 mol/mol-sucrose at 2 h. In the RP, the yield increased from 0.86 mol/mol-sucrose at 24 h of HRT to the maximum of 1.22 mol/mol-sucrose at 14 h of HRT, and then decreased to 0.78 mol/mol-sucrose at 2 h. Overall, the reactor with packing was more effective than the one free of packing. In both reactors, sludge agglutinated into granules. The microbial community of granular sludge in RP was investigated using 16S rDNA based techniques. The distribution of bacterial cells and extracellular polysaccharides in hydrogen-producing granules was investigated by fluorescence-based techniques. Results indicated that most of the N-acetyl-galactosamine/galactose-containing extracellular polysaccharides were distributed on the outer layer of the granules with a filamentous structure.


2013 ◽  
Vol 724-725 ◽  
pp. 216-221 ◽  
Author(s):  
Cristiano Varrone ◽  
Lei Zhao ◽  
Guang Li Cao ◽  
Tao Sheng ◽  
Nan Qi Ren ◽  
...  

Lignocellulosic biomass can be an ideal feedstock for fermentative hydrogen production if properly pretreated and hydrolyzed. In this research, to enhance hydrogen production from cornstalk, acid and alkali pretreatments were performed. Alkali pretreatment was conducted at 80°C for 60 min and room temperature for 7 days with the addition of 4% NaOH; acid pretreatments at 190°C, and 120°C for 10 min and 120 min, respectively, with the addition of 1.7% H2SO4. All the chemical components change of the substrates was detected. The highest lignin reduction of 75.6%, compared to untreated samples, was found at 80°C with 4% NaOH dosage. Under this pretreatment condition, highest increase in reducing sugar and hydrogen yield (up to 11.8 g/L and 71.8 ml/g-pretreated cornstalk) was obtained. The present results suggested an efficient pretreatment method to increase hydrogen production from lignocellulosic biomass.


2012 ◽  
Vol 512-515 ◽  
pp. 1446-1449 ◽  
Author(s):  
Hong Xu Bao ◽  
Wei Wei Cai ◽  
Xi Ping Ma ◽  
You Tao Song ◽  
Man Li Shen ◽  
...  

A high efficiency simultaneous cellulose degradation and hydrogen production strain X9 was obtained from the screening of the 125 strains of fermentative hydrogen production bacteria which were isolated from a continuous stirred-tank hydrogen production bioreactor (CSTR) with LM-1 and microcrystalline cellulose (MCC) medium and improved Hungered technique in this study. X9 was confirmed a new category by analyzing the results of biochemical and physiological test, shape character, 16S rDNA sequencing and phylogenetic, and then analysis characteristics of growth, culture parameters, the effects of components of medium on growth and ability of hydrogen production, the optimum technological parameters have been determined from orthogonal experiment and single factor test. Finally, X9 achieved maximum specific hydrogen yield of 4.9mmol/g with MCC under the optimal conditions.


2010 ◽  
Vol 113-116 ◽  
pp. 1132-1137 ◽  
Author(s):  
Yong Feng Li ◽  
Yong Ming Hui ◽  
Xin Yao ◽  
Lu Wang ◽  
Qian Wen Song ◽  
...  

In this experiment, brown sugar was chosen as the substrate of continuous operation. A lab-scale expanded granular sludge blanket (EGSB) reactor was employed. Stable ethanol-type fermentation was formed by controlling the organic loading rate (OLR). The results showed a maximum hydrogen production rate of 5.73L / L reactor•d was achieved, under the condition that the hydraulic retention time (HRT) = 2h, OLR = 97.2kg COD/m3 reactor•d. The average hydrogen content in the biogas during the 73-day operation was 41.27%.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Pietro Carlozzi

The main goal of this study was to increase the hydrogen production rate improving the culture technique and the photobioreactor performances. Experiments were carried out at a constant culture temperature of 30°C and at an average irradiance of 480 W m−2using a cylindrical photobioreactor (4.0 cm, internal diameter). The culture technique, namely, the semicontinuous regime for growingRhodopseudomonas palustris42OL made it possible to achieve a very high daily hydrogen production rate of 594 ± 61 mL (H2) L−1 d−1. This value, never reported for this strain, corresponds to about 25 mL (H2) L−1 h−1, and it was obtained when the hydraulic retention time (HRT) was of 225 hours. Under the same growth conditions, a very high biomass production rate (496 ± 45 mg (dw) L−1 d−1) was also achieved. Higher or lower HRTs caused a reduction in both the hydrogen and the biomass production rates. The malic-acid removal efficiency (MAre) was always higher than 90%. The maximal hydrogen yield was 3.03 mol H2mol MA−1at the HRT of 360 hours. The highest total energy conversion efficiency was achieved at the HRT of 225 hours.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6769
Author(s):  
Nurhidayu Al-saari ◽  
Eri Amada ◽  
Yuta Matsumura ◽  
Mami Tanaka ◽  
Sayaka Mino ◽  
...  

Biohydrogen is one of the most suitable clean energy sources for sustaining a fossil fuel independent society. The use of both land and ocean bioresources as feedstocks show great potential in maximizing biohydrogen production, but sodium ion is one of the main obstacles in efficient bacterial biohydrogen production.Vibrio tritoniusstrain AM2 can perform efficient hydrogen production with a molar yield of 1.7 mol H2/mol mannitol, which corresponds to 85% theoretical molar yield of H2production, under saline conditions. With a view to maximizing the hydrogen production using marine biomass, it is important to accumulate knowledge on the effects of salts on the hydrogen production kinetics. Here, we show the kinetics in batch hydrogen production ofV. tritoniusstrain AM2 to investigate the response to various NaCl concentrations. The modified Han–Levenspiel model reveals that salt inhibition in hydrogen production usingV. tritoniusstarts precisely at the point where 10.2 g/L of NaCl is added, and is critically inhibited at 46 g/L. NaCl concentration greatly affects the substrate consumption which in turn affects both growth and hydrogen production. The NaCl-dependent behavior of fermentative hydrogen production ofV. tritoniuscompared to that ofEscherichia coliJCM 1649 reveals the marine-adapted fermentative hydrogen production system inV. tritonius.V. tritoniusAM2 is capable of producing hydrogen from seaweed carbohydrate under a wide range of NaCl concentrations (5 to 46 g/L). The optimal salt concentration producing the highest levels of hydrogen, optimal substrate consumption and highest molar hydrogen yield is at 10 g/L NaCl (1.0% (w/v)).


2011 ◽  
Vol 63 (9) ◽  
pp. 1849-1854 ◽  
Author(s):  
C. H. Lay ◽  
F. Y. Chang ◽  
C. Y. Chu ◽  
C. C. Chen ◽  
Y. C. Chi ◽  
...  

Anaerobic digestion is an effective technology to convert cellulosic wastes to methane and hydrogen. Heat-treatment is a well known method to inhibit hydrogen-consuming bacteria in using anaerobic mixed cultures for seeding. This study aims to investigate the effects of heat-treatment temperature and time on activated sludge for fermentative hydrogen production from α-cellulose by response surface methodology. Hydrogen and methane production was evaluated based on the production rate and yield (the ability of converting cellulose into hydrogen and methane) with heat-treated sludge as the seed at various temperatures (60–97°C) and times (20–60 min). Batch experiments were conducted at 55°C and initial pH of 8.0. The results indicate that hydrogen and methane production yields peaked at 4.3 mmol H2/g cellulose and 11.6 mmol CH4/g cellulose using the seed activated sludge that was thermally treated at 60°C for 40 min. These parameter values are higher than those of no-treatment seed (HY 3.6 mmol H2/g cellulose and MY 10.4 mmol CH4/g cellulose). The maximum hydrogen production rate of 26.0 mmol H2/L/d and methane production rate of 23.2 mmol CH4/L/d were obtained for the seed activated sludge that was thermally treated at 70°C for 50 min and 60°C for 40 min, respectively.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 23-29 ◽  
Author(s):  
S.-H. Kim ◽  
S.-K. Han ◽  
H.-S. Shin

This study was conducted to compare the performance of a continuous-flow stirred-tank reactor (CSTR) and an anaerobic sequencing batch reactor (ASBR) for fermentative hydrogen production at various substrate concentrations. Heat-treated anaerobic sludge was utilized as an inoculum, and hydraulic retention time (HRT) for each reactor was maintained at 12h. At the influent sucrose concentration of 5g COD/L, start-up was not successful in both reactors. The CSTR, which was started-up at 10g COD/L, showed stable hydrogen production at the influent sucrose concentrations of 10–60g COD/L during 203 days. Hydrogen production was dependent on substrate concentration, resulting in the highest performance at 30g COD/L. At the lower substrate concentration, the hydrogen yield (based on hexose consumed) decreased with biomass reduction and changes in fermentation products. At the higher substrate concentration, substrate inhibition on biomass growth caused the decrease of carbohydrate degradation and hydrogen yield (based on hexose added). The ASBR showed higher biomass concentration and carbohydrate degradation efficiency than the CSTR, but hydrogen production in the ASBR was less effective than that in the CSTR at all the substrate concentrations.


Sign in / Sign up

Export Citation Format

Share Document