Calculation of Crack Width of Steel-Concrete Composite Beam Prestressed with Internal Tendons

2014 ◽  
Vol 889-890 ◽  
pp. 1445-1449
Author(s):  
Shuan Jiang ◽  
Li Li Bai ◽  
Wei Chen Xue

Steel-concrete composite beam prestressed with internal tendons (SCCPIT) is composed of prestressed concrete slab, steel beam and shear connectors, etc. At present, there is no calculation formula for crack width of SCCPIT in current design codes like European standard Eurocode 4 or American code ASSHTO LERD Bridge Design Specification (2004). In this paper, calculation formulas for crack width of nonprestressed steel-concrete composite beam provided in Code for Design of SteelConcrete Composite Structure (DL/T 50851999) were adopted as a basis for modification. On the basis of available test results, calculation formulas for uneven coefficient of reinforcement strain and average crack space were modified by consideration of concrete slab width and combined force ratio. Hence, empirical calculation formulas for crack width of SCCPIT under negative moment were proposed. In order to verify accuracy of proposed formulas, available test results including results of five simply supported SCCPITs previously conducted by author were introduced, and comparisons indicated that calculated values were in good agreement with test results.

2013 ◽  
Vol 850-851 ◽  
pp. 183-187
Author(s):  
Shuan Jiang ◽  
Li Li Bai ◽  
Wei Chen Xue

Steelconcrete composite beam prestressed with internal tendon (SCCPIT) is composed of prestressed concrete slab, steel beam and shear connectors, etc. At present, there is no calculation formula for crack width of SCCPIT in current design codes Eurocode 4, ASSHTO or Chinese Code for Design of Steel Structures (GB 500172003). In this paper, the calculating formulas for crack width provided in Code for Design of SteelConcrete Composite Structure (DL/T 50851999) were adopted as a basis for modification. On the basis of available test results, the calculation formulas for uneven coefficient of reinforcement strain and average crack space were modified by consideration of concrete slab width and combined force ratio. Hence, empirical calculating formulas of crack width of SCCPIT under negative moment were proposed. In order to verify the accuracy of the proposed formulas, five simply supported SCCPITs previously conducted by research group were analyzed, and comparisons indicated that the calculated values are in good agreement with the test results.


Author(s):  
Methee Chiewanichakorn ◽  
Amjad J. Aref ◽  
Stuart S. Chen ◽  
Il-Sang Ahn

A composite section is made up of a steel girder and concrete slab connected by shear connectors. The shear lag phenomenon usually takes place in such a section and results in underestimation of stresses and strains at the web-to-flange intersections of the girder. With the introduction of the concept of effective slab width, the actual width can be replaced by an appropriate reduced slab width. The classical effective slab width definition does not take into account the strain variation through the slab thickness. More sophisticated definitions are introduced and used with finite element analyses. The method of finite element modeling is discussed, and the model is successfully verified with experimental results. Parametric study is conducted to investigate the effective slab width for both positive and negative moment sections. The effective slab width is computed and compared with the current AASHTO load and resistance factor design (LRFD) specifications. The results demonstrate that full width can be used as the effective slab width in the design and analysis in most cases for the design and analysis of both positive and negative moment sections. The current AASHTO LRFD specifications are found to be conservative for configurations with widely spaced girders, especially in negative moment sections.


2016 ◽  
Vol 20 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Yuchen Jiang ◽  
Xiamin Hu ◽  
Wan Hong ◽  
Mingming Gu ◽  
Weimin Sun

In order to investigate the mechanical behavior of the partially concrete encased composite beam under hogging moment, static loading tests were conducted on one conventional composite beam and three partially concrete encased composite beams. The results show that partially concrete encased composite beams have higher stiffness and flexural capacity under hogging moment as compared with conventional composite beams. It is also found that the concrete encasement is able to enhance the local bucking resistance of the steel beam and effectively reduces the propagation speed of crack width under hogging moment. By comparing different partially concrete encased composite beams, it is indicated that the stiffness and flexural capacity of partially concrete encased composite beams increase with the increase in reinforcement ratio of the concrete slab. Also, with the increase in the reinforcement ratio of the concrete slab, the distribution of cracks on the slab is denser and the propagation speed of crack width reduces. In addition, the calculation methods in both European code and Chinese code can well predict the crack width on the concrete slab, and the ultimate flexural capacity predicted from the simplified plastic theory in Eurocode 4 is in good agreement with test results.


1976 ◽  
Vol 3 (4) ◽  
pp. 514-522 ◽  
Author(s):  
M. N. El-Ghazzi ◽  
H. Robinson ◽  
I. A. S. Elkholy

The longitudinal shear failure of the slab of composite beams is constrained to occur at a predetermined shear surface. A method for calculating the longitudinal shear capacity of the slab of simply-supported steel–concrete composite beams is presented. The method is based on analyzing the stresses at failure of the concrete elements located at the slab shear surface.A design chart based on estimating the transverse normal stress required within the concrete slab to achieve the full ultimate flexural capacity of the composite beam is proposed. Alternatively, using elastic–plastic stress distribution across the concrete slab, the longitudinal compressive force due to bending and hence the applied moment can be predicted for any longitudinal shear capacity of the slab. The proposed design and analysis when compared to previous tests and analysis showed good agreement.The slab width and the shear span of the composite beam are found to be two important parameters which cannot be neglected when estimating the longitudinal shear capacity of the slab. These two parameters have been neglected in the empirical solutions previously adopted.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhangqi Hu ◽  
Ran He ◽  
Yukui Wang ◽  
Weirong Lv ◽  
Jingchao Li

This paper proposes a novel U-shaped steel-encased concrete composite beam-girder joint (referred to herein as the novel composite beam-girder joint), in which the U-shaped beams at two sides (L and R) are inserted into a shaped sleeve, and the U-shaped girder and two U-shaped beams are connected by the shaped sleeve through welding. Compared with the traditional beam-girder joints, the novel composite beam-girder joints take advantage of easy construction, light weight, and short construction period. The failure patterns, load-strain and load-deflection curves, and strain distributions of the novel composite beam-girder joints were investigated through the static loading tests on two full-scale specimens, denoted as GBJ1 and GBJ2. The two specimens were varied in beam section reinforcements. Specimen GBJ2 was equipped with 3Ф16 additional bars in the U-shaped beams based on Specimen GBJ1. Test results show that the two specimens failed as the through arc cracks developed at the concrete slab interfaces. The additional bars can increase the bearing capacity slightly but will also increase the stress concentration on the bottom flange of the shaped sleeve, leading to the decrease of ductility for Specimen GBJ2. The slab effect is considered in the test and can thus reflect the actual stress state of the beam-girder joints well. This study can provide a reference for the design and application of beam-girder joints.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2958 ◽  
Author(s):  
Jun Chen ◽  
Wei Wang ◽  
Fa-Xing Ding ◽  
Ping Xiang ◽  
Yu-Jie Yu ◽  
...  

The high-strength bolt shear connector in prefabricated concrete slab has advantages in applications as it reduces time during the construction of steel-concrete composite building structures and bridges. In this research, an innovative and advanced bolt shear connector in steel-concrete composite structures is proposed. To investigate the fundamental mechanical behavior and the damage form, 22 static push-off tests were conducted with consideration of different bolt dimensions, the reserved hole constraint condition, and the dimension of slab holes. A finite element (FE) model was established and verified by using test results, and then the model was utilized to investigate the influence of concrete strength, bolt dimension, yield strength, bolt pretension, as well as length-to-diameter ratio of high strength bolts on the performances of shear connectors. On the basis of FE simulation and test results, new design formulas for the calculation of shear resistance behavior were proposed, and comparisons were made with current standards, including AISC, EN 1994-1-1, GB 50017-2017, and relevant references, to check the calculation efficiency. It is confirmed that the proposed equation is in better agreement with the experimental results.


2001 ◽  
Vol 4 (2) ◽  
pp. 101-110 ◽  
Author(s):  
S. H. Chowdhury ◽  
Y. C. Loo

A new formula for predicting the average crack widths in reinforced and partially prestressed concrete beams has been developed incorporating four governing parameters. The performance of the proposed formula is checked using the authors' test results which includes crack spacing and crack width measurements from 18 reinforced and 12 partially prestressed concrete beams. Also included in the comparison are published data on 76 beams from other laboratory investigations. The comparative study indicates that the predictions are accurate. The performance of the proposed formula is also compared with three major code formulas, viz those recommended in the ACI Building Code, the British Standard and the Eurocode. It is concluded that better correlation with test data is achieved by the proposed formula.


2020 ◽  
Vol 167 ◽  
pp. 105667 ◽  
Author(s):  
Yu-Hang Wang ◽  
Jie Yu ◽  
Jie-Peng Liu ◽  
Bao-Xu Zhou ◽  
Y. Frank Chen

2013 ◽  
Vol 368-370 ◽  
pp. 1668-1673
Author(s):  
Zhi Hua Li ◽  
Xiao Zu Su

Fourteen concrete beams reinforced with 500MPa longitudinal steel bars, of which 6 with skin reinforcement and 8 without skin reinforcement, were tested under two-point symmetrical concentrated static loading to investigate their flexural behavior. The results indicate that the flexural behavior and deflection mode of test beams with skin reinforcement are basically consistent with those of test beams without skin reinforcement. The use of skin reinforcement can significantly reduce average crack spacing and short-time maximum crack width. And the use of skin reinforcement can also slightly increase the short-time stiffness. Under the serviceability limit state, mid-span deflections are in good agreement with the calculated values according to formula in GB50010-2010. However most of calculated average crack spacing and short-time maximum crack width are larger than measured values. According to the test results, the normal formula of crack width should be revised.


Sign in / Sign up

Export Citation Format

Share Document