Product Rich in Phosphorus Produced from Phosphorus-Contaminated Water

2014 ◽  
Vol 894 ◽  
pp. 261-265 ◽  
Author(s):  
Osama Eljamal ◽  
Junya Okawauchi ◽  
Kazuaki Hiramatsu

The study investigates the capacity of different soils and byproduct materials on removal of phosphorus from water. The aim of this study has been drawn to gain a product rich in phosphorus, which can be recycled by the phosphorus industry or may directly be used as a fertilizer. For the development of this phosphorus removal and recovery method, batch and column experiments were carried out in the laboratory scale to evaluate the removal of phosphorus from water under dynamic conditions. Three columns were filled with mixed soils and marble dust and loaded with a phosphorus solution 100 mg/l concentration. The results showed that using the marble dust as adsorbent among other materials could be removing more than 93% of phosphorus from aqueous solution.

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2012
Author(s):  
Vitória Régia do Nascimento Lima ◽  
Álvaro Gustavo Ferreira da Silva ◽  
Renata Ranielly Pedroza Cruz ◽  
Luana da Silva Barbosa ◽  
Neilier Rodrigues da Silva Junior ◽  
...  

Contaminated water consumption is one of the greatest risks to human health, especially in underdeveloped and developing countries. Water is a universal right, but millions of people worldwide consume untreated surface water. The objective in this study is to evaluate water purification with Nopalea cochenillifera var. Miúda biomass. Fragments (1, 2, and 3 g) of N. cochenillifera were added to the aqueous solution containing red-yellow Chromic and Podzolic Luvisol simulating turbid water sources in Northeastern Brazil. The total, non-structural (i.e., reducing and non-reducing sugars, alcohol insoluble solids), and structural (i.e., pectin) carbohydrates, adsorption kinetics, turbidity, electrical conductivity, pH, zeta potential, and total coliforms presence were evaluated. Findings show that the Nopalea cochenillifera biomass adsorbed the suspended particles in the aqueous solution, making it more translucent due to the complex and heterogeneous adsorbents’ ion exchange matrix, but the biomass addition did not eliminate total coliforms from the aqueous solution. We concluded that the Nopalea cochenillifera biomass water treatment reduces suspended dissolved particles and turbidity, but it needs to be associated with other treatments to eliminate total coliforms and ensure water safety for human consumption.


2018 ◽  
Vol 46 (2) ◽  
pp. 1700378 ◽  
Author(s):  
Giorgos Markou ◽  
Dimitris Mitrogiannis ◽  
Vassilis Inglezakis ◽  
Koenraad Muylaert ◽  
Nikolaos Koukouzas ◽  
...  

2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


2016 ◽  
Vol 293 ◽  
pp. 225-231 ◽  
Author(s):  
Osama Eljamal ◽  
Ahmed M.E. Khalil ◽  
Yuji Sugihara ◽  
Nobuhiro Matsunaga

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1210
Author(s):  
Abtin Shahrokh Hamedani ◽  
Arianne Bazilio ◽  
Hanieh Soleimanifar ◽  
Heather Shipley ◽  
Marcio Giacomoni

Low impact development (LID) practices, such as bioretention and sand filter basins, are stormwater control measures designed to mitigate the adverse impacts of urbanization on stormwater. LID treatment performance is highly dependent on the media characteristics. The literature suggests that bioretention media often leach nutrients in the stormwater effluent. The objective of this study was to analyze the treatment performance of different sand and bioretention soil mixtures. Specifically, this investigation aimed to answer whether the use of limestone and recycled glass could improve the treatment performance of bioretention systems. Column experiments were designed to assess (1) the removal efficiencies of different sand and bioretention soil mixtures and (2) the impact of plant uptake on removal rates. Enhanced pollutant removal was observed for the custom blends with addition of limestone sand, indicating mean dissolved and total phosphorus removal of 44.5% and 32.6% respectively, while the conventional bioretention soil mixtures leached phosphorus. Moreover, improved treatment of dissolved and total copper was achieved with mean removal rates of 70.7% and 93.4%, respectively. The results suggest that the nutrient effluent concentration decreased with the addition of plants, with mean phosphorus removal of 72.4%, and mean nitrogen removal of 22% for the limestone blend.


Carbon ◽  
2013 ◽  
Vol 52 ◽  
pp. 621-622 ◽  
Author(s):  
Reiko Watanabe ◽  
Tsugiko Takase ◽  
Takashi Asada

Sign in / Sign up

Export Citation Format

Share Document