The Design of Numerical Control all Attitude Integrated Gyro Test Turntable

2014 ◽  
Vol 898 ◽  
pp. 530-533
Author(s):  
Qi Wang ◽  
Fan Yang ◽  
Xie Nong ◽  
Yun Ming Huang

This paper introduces the design points of the numerical control all attitude combined gyroscope test turntable. This Test table includes the course and pose angle given system, heading and attitude angle testing system and three weeks of servo system Heading and attitude angle of a given system using ZAZ1413 angle digital conversion module. Heading and attitude angle measurement system using SZZ1413 angle conversion module.

2013 ◽  
Vol 721 ◽  
pp. 497-500
Author(s):  
Guo Jin Chen ◽  
Jing Ni ◽  
Ting Ting Liu ◽  
Ming Xu

Aiming at the lower performance, accuracy and efficiency of the existing motion control process for the traditional broaching machine, the paper studies the high-performance dual-hydraulic synchronous servo drive control technology. The synchronous electro-hydraulic servo system forms the closed loop control by the detection and feedback of the output quantity. It eliminates and restrains largely the influence of the adverse factors to obtain the high-precision synchronous driving performance. The numerical control system based on the real-time error compensation and the intelligent control to the auxiliary machinery is developed. It is used for the CNC broaching machine to make the steady-state synchronous displacement error of the double cylinders be ≤ 0.5mm.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 588
Author(s):  
Benjamin C. Smith ◽  
Brett C. Ramirez ◽  
Steven J. Hoff

Many climate-controlled agricultural buildings use direct gas-fired circulating heaters (DGFCH) for supplement heat. There is no standardized test to calculate thermal efficiency for these heaters. This study aimed to develop a measurement system and analytical analysis for thermal efficiency, quantify the measurement uncertainty, and assess economics of DGFCH efficiency. The measurement system developed was similar to the ASHRAE 103 standard test stand with adaptations to connect the apparatus to the DGFCH. Two different propane measurement systems were used: input ratings < 30 kW used a mass flow system and input ratings > 30 kW used a volumetric gas meter. Three DGFCHs (21.9, 29.3, 73.3 kW) were tested to evaluate the system. Thermal efficiencies ranged from 92.4% to 100.9%. The resulting uncertainty (coverage factor of 2; ~95% Confidence Interval) ranged from 13.1% to 30.7% for input ratings of 56.3 to 11.4 kW. Key sources of uncertainty were propane and mass flow of air measurement. The economic impact of 1% difference in thermal efficiency ranged from USD $61.3 to $72.0 per heating season. Refinement of the testing system and procedures are needed to reduce the uncertainty. The application of this system will aid building designers in selection of DGFCHs for various applications.


Author(s):  
Tanja Niemelä ◽  
Markku Leppänen ◽  
Minna Päivinen ◽  
Markku Mattila

During the Eurohandtool Project an experimental testing system for non-powered hand tools was developed for laboratory testing. With this system, it is possible to measure simultaneously (1) the EMG activity of two muscles, (2) the opening angle of hand tool blades by means of a potentiometer and, (3) by means of strain gages, the force transmitted to the handle. The first part of evaluation of the system was to determine its time of warming-up, reliability, linearity and repeatability. This paper concentrates on the second part, during which the aim was to test the measurement system by comparing the forces needed to cut wood of a certain diameter, and the actual force required, as measured by a material-testing system. The correlation between forearm flexor muscle activity and the compression force created by the user was investigated. The evaluation of experimental testing system for non-powered hand tools has shown that there are methods to measure force demand, opening angle and EMG-activity simultaneously. However, it is recommended to make some improvements before this measurement system can be taken into widespread use.


Author(s):  
Agus Sudianto ◽  
Zamberi Jamaludin ◽  
Azrul Azwan Abdul Rahman ◽  
Sentot Novianto ◽  
Fajar Muharrom

Manufacturing process of metal part requires real-time temperature monitoring capability to ensure high surface integrity is upheld throughout the machining process. A smart temperature measurement and monitoring system for manufacturing process of metal parts is necessary to meet quality and productivity requirements. A smart temperature measurement can be applied in machining processes of conventional, non-conventional and computer numerical control (CNC) machines. Currently, an infrared fusion based thermometer Fluke Ti400 was employed for temperature measurement in a machining process. However, measured temperature in the form of data list with adjustable time range setting is not automatically linked to the computer for continuous monitoring and data analysis purposes. For this reason, a smart temperature measurement system was developed for a CNC milling operation on aluminum alloy (AA6041) using a MLX90614 infrared thermometer sensor operated by Arduino. The system enables data linkages with the computer because MLX90614 is compatible and linked to Microsoft Exel via the Arduino. This paper presents a work-study on the performance of this Arduino based temperature measurement system for dry milling process application. Here, the Arduino based temperature measurement system captured the workpiece temperature during machining of Aluminum Alloy (AA6041) and data were compared with the Fluke Ti400 infrared thermometer. Measurement results from both devices showed similar accuracy level with a deviation of ± 2 oC. Hence, a smart temperature measurement system was succeesfully developed expanding the scopes of current system setup.


Sign in / Sign up

Export Citation Format

Share Document