Laser Compensation for Ceramics Accuracy Improvement of Selective Laser Sintering

2014 ◽  
Vol 902 ◽  
pp. 12-17 ◽  
Author(s):  
Ruey Tsung Lee ◽  
Fwu Hsing Liu ◽  
Ku En Ting ◽  
Sheng Lih Yeh ◽  
Wen Hsueng Lin

This research developed a feedback control system of laser compensation for the rapid prototyping (RP) machine using layer-wise slurry deposition and selective laser sintering (SLS). The slurry was prepared by silica power and silica sol with 60 and 40 wt.% with suitable rheological properties for 0.1 mm layer deposition. Four ceramics for comparison of the formability of fabricated ceramic green parts with/without the feedback control system of laser energy density for models were designed With this laser feedback control, batter quality ceramic green parts can be manufactured and the rapid prototyping machine with steady laser energy radiated on slurry layer was achieved. Experimental results validate the well performance of the measuring laser power and feedback control system.


2018 ◽  
Vol 92 (3) ◽  
pp. 318-328
Author(s):  
Marcin Chodnicki ◽  
Katarzyna Bartnik ◽  
Miroslaw Nowakowski ◽  
Grzegorz Kowaleczko

Purpose The motivation to perform research on feedback control system for unmanned aerial vehicles, a fact that each quadrocopter is unstable. Design/methodology/approach For this reason, it is necessary to design a control system which is capable of making unmanned aerial vehicle vertical take-off and landing (UAV VTOL) stable and controllable. For this purpose, it was decided to use a feedback control system with cascaded PID controller. The main reason for using it was that PID controllers are simple to implement and do not use much hardware resources. Moreover, cascaded control systems allow to control object response using more parameters than in a standard PID control. STM32 microcontrollers were used to make a real control system. The rapid prototyping using Embedded Coder Toolbox, FreeRTOS and STM32 CubeMX was conducted to design the algorithm of the feedback control system with cascaded PID controller for unmanned aerial vehicle vertical take-off and landings (UAV VTOLs). Findings During research, an algorithm of UAV VTOL control using the feedback control system with cascaded PID controller was designed. Tests were performed for the designed algorithm in the model simulation in Matlab/Simulink and in the real conditions. Originality/value It has been proved that an additional control loop must have a full PID controller. Moreover, a new library is presented for STM32 microcontrollers made using the Embedded Coder Toolbox just for the research. This library enabled to use rapid prototyping while developing the control algorithms.







2021 ◽  
Vol 165 ◽  
pp. 112218
Author(s):  
Rohit Kumar ◽  
Pramila Gautam ◽  
Shivam Gupta ◽  
R.L. Tanna ◽  
Praveenlal Edappala ◽  
...  




1992 ◽  
Vol 21 (3P2A) ◽  
pp. 1624-1629 ◽  
Author(s):  
M. Matsukawa ◽  
H. Ninomiya ◽  
H. Horiike ◽  
N. Hosogane ◽  
R. Yoshino


2021 ◽  
Vol 92 (10) ◽  
pp. 103705
Author(s):  
Francisco Martín-Vega ◽  
Víctor Barrena ◽  
Raquel Sánchez-Barquilla ◽  
Marta Fernández-Lomana ◽  
José Benito Llorens ◽  
...  


Author(s):  
Jia Ji Lee ◽  
Chang Hong Pua ◽  
Misni Misran ◽  
Poh Foong Lee

Objectives: Magnetic drug targeting offers the latest popular alternative option to deliver magnetic drug carriers into targeting region body parts through manipulation of an external magnetic field. However, the effectiveness of using an electromagnetic field to manipulate and directing magnetic particles is yet to be established. Methods: In this paper, a homemade cost-effective electromagnet system was built for the purpose of studying the control and directing the magnetic drug carriers. The electromagnet system was built with four electromagnetic sources and tested the capability in directing the particles’ movement in different geometry patterns. Besides that, the creation of the self-rotation of individual magnetic particle clusters was achieved by using fast switching between magnetic fields. This self-rotation allows the possibility of cell apoptosis study to carry out. The system was constructed with four electromagnets integrated with a feedback control system and built to manipulate a droplet of commercially available iron (II, III) oxide nanoparticles to steer the magnetic droplet along different arbitrary trajectories (square, circle, triangle, slanted line) in 2-dimensional. Results: A dynamic magnetic field of 25 Hz was induced for magnetic nanoparticles rotational effect to observe the cell apoptosis. A profound outcome shows that the declining cell viability of the cell lines by 40% and the morphology of shrinking cells after the exposure of the dynamic magnetic field. Conclusion: The outcome from the pilot study gives an idea on the laboratory setup serves as a fundamental model for studying the electromagnetic field strength in applying mechanical force to target and to rotate for apoptosis on cancer cell line study.



Sign in / Sign up

Export Citation Format

Share Document