The Intelligent Control Method of Additive Manufacturing Flow Based on the Measurement of the Line Width

2014 ◽  
Vol 904 ◽  
pp. 352-356
Author(s):  
Rui Yan Wang ◽  
Ting Chun Shi ◽  
Yi Zhang

Based on the closed-loop control theory in the paper, an intelligent control method of additive manufacturing based on the measurement of the line width is studied. The setpoint with the current line width which is scanned by the CCD sensor is compared, the relative relationship between the displacement speed of the forming equipments workbench and the rate of flow of the nozzle could be controlled. The Results of the study shows intelligent control of solid model and scaffoldss accuracy, pores shape and porosity, the forming precision is improved greatly makes the cell differentiation, attachment and crawling easy.

2014 ◽  
Vol 945-949 ◽  
pp. 2726-2731
Author(s):  
Yu Yao

This paper mainly introduces a PID controller, which is optimized by an improved BP algorithm, and discusses the analysis method of it. It states a way to dynamically adjust the learning rate and the momentum factor through the variety of the input and output of the PID controller to realize an intelligent control. And it connects this control method with the control of the hot winds of the gas in bar furnace of a steel plant to realize a closed-loop control and solve the problems such as the wave of the gas pressure and the insufficiency of combustion. According to the practice, the fluctuation of gas pressure is restricted within 5%, which means that this control method could largely improve the precision of furnace control and further more raise the economic and social benefits.


Author(s):  
Wanfei Ren ◽  
Jinkai Xu ◽  
Zhongxu Lian ◽  
Xiaoqing Sun ◽  
Zheming Xu ◽  
...  

Abstract The fabrication of pure copper microstructures with submicron resolution has found a host of applications such as 5G communications and highly sensitive detection. The tiny and complex features of these structures can enhance device performance during high-frequency operation. However, the easy manufacturing of microstructures is still a challenge. In this paper, we present localized electrochemical deposition micro additive manufacturing (LECD-μAM), combining localized electrochemical deposition (LECD) and closed-loop control of atomic force servo technology, which can print helical springs and hollow tubes very effectively. We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and the closed-loop control of an atomic force servo. The printing state of the micro-helical springs could be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe (AFP) cantilever. The results showed that it took 361 s to print a helical spring with a wire length of 320.11 μm at a deposition rate of 0.887 μm/s, which could be changed on the fly by simply tuning the extrusion pressure and the applied voltage. Moreover, the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring. The shear modulus of the helical spring material was about 60.8 GPa, much higher than that of bulk copper (~44.2 GPa). Additionally, the microscopic morphology and chemical composition of the spring were characterized. These results delineated a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.


2013 ◽  
Vol 448-453 ◽  
pp. 2167-2170
Author(s):  
Kai Li ◽  
Yi Hui Zheng ◽  
Xin Wang ◽  
Li Xue Li ◽  
Gang Yao ◽  
...  

To realize the STATCOM based on Modular Multilevel Converter (MMC), a simplified double-closed loop structure, simplifying from the control method of High Voltage Direct Current (HVDC) based on MMC, is presented. Considering MMCs DC side using capacitors, a part-controlling method based on energy balancing is proposed, to solve the voltage balancing problem. With the part-controlling fixing the changing capacitors voltage and the simplified double-closed loop control method, voltage fluctuation could be reduced, and the loads reactive power could be compensated. The correctness and the effectiveness of the MMC-STATCOM controlling scheme is verified by Matlab/Simulink.


2009 ◽  
Vol 628-629 ◽  
pp. 257-262 ◽  
Author(s):  
Tong Xing

The cutter head drive hydraulic system of φ1.8m simulate shield machine is introduced in this article, which has the variable speed pump control technique and the closed loop control method. The AMESim simulation model of the hydraulic system is built up, and the efficiency of the hydraulic system, speed control performance by open loop and closed loop control are analyzed. The result of the simulation shows that the variable speed pump control system has higher efficiency than the variable displacement pump control system about 4%-26% in the same condition when the cutter head speed is at the range of 0.5-4r/min, and the hydraulic system has good dynamic characteristics in closed-loop PID control.


2011 ◽  
Vol 391-392 ◽  
pp. 1450-1454
Author(s):  
Yong Jian Wu ◽  
Ping Zhou ◽  
Pin Shang ◽  
Tian You Chai

An electro-fused magnesia furnace (EFMF) is used to produce electro-fused magnesia. Due to the complex dynamic characteristics of the EFMF production process, it is difficult to achieve the satisfactory control performances only by the independent conventional control method. As a result, the lower loop control with manual operations is still widely used in practice. However, the manual operation cannot ensure that the actual production qualities and the energy consumption of unit production meet the technical requirements all the time. In this paper, an intelligent operation control strategy is developed for the EFMF to automatically adjust the setpoints of the lower level control system. Based on the proposed intelligent control strategy, an intelligent control system for the EFMF is built and implemented on site. Industrial application has demonstrated that the intelligent control system can achieve reliable, accurate and timely control performances.


2016 ◽  
Author(s):  
Insoo Jung ◽  
Jaemin Jin ◽  
Dongchul Lee ◽  
Seunghyun Lee ◽  
Seungwook Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document