Influence of Magnetic Conductive Rubber on Maglev Actuator in Active Vibration Control

2014 ◽  
Vol 926-930 ◽  
pp. 1365-1369
Author(s):  
Yuan Ni ◽  
Lin He ◽  
Chang Geng Shuai

Theoretical and finite element models of maglev actuator are both established. Magnetic conductive rubber is added into the actuator to improve its performance. Numerical simulations and experiments show that adding conductive rubber increases the output force-power ratio while reduces the dynamic response slightly.

2005 ◽  
Vol 475-479 ◽  
pp. 2089-2094
Author(s):  
Hui Bin Xu ◽  
Tian Li Zhang ◽  
Cheng Bao Jiang ◽  
Hu Zhang

TbDyFe is a rare earth-iron magnetostrictive alloy with “giant” magnetostrain, good magnetomechanical coupling factor and fast response. Giant magnetostrictive actuators (GMAs) are designed and fabricated with home-made TbDyFe rods. Their magnetostrain properties under varied operation are tested. The static output displacement up to 100μm and output force up to 1500N were obtained. The dynamic displacement increases with amplitude under fixed frequency and decreases with frequency under fixed amplitude generally. The maximum dynamic output displacement of 146µm was obtained at natural frequency around 5Hz. Active vibration control employing GMA was implemented in the flexible structure. The excellent damping effect, 20-30 dB under the frequency range from 10Hz to 100Hz was obtained. The dynamic phase delay of GMA has been analyzed. A novel improved FSLMS algorithm is proposed to achieve a better control performance.


2007 ◽  
Vol 04 (01) ◽  
pp. 141-162 ◽  
Author(s):  
V. BALAMURUGAN ◽  
B. MANIKANDAN ◽  
S. NARAYANAN

This paper presents a higher order — field consistent — piezolaminated 8-noded plate finite element with 36 elastic degrees-of-freedom per element and two electric degrees-of-freedom per element, one each for the piezoelectric sensor and actuator. The higher order plate theory used satisfies the stress and displacement continuity at the interface of the composite laminates and has zero shear stress on the top and bottom surfaces. The transverse shear deformation is of a higher order represented by the trigonometric functions allowing us to avoid the shear correction factors. In order to maintain the field consistency, the inplane displacements, u and v are interpolated using linear shape functions, the transverse displacement w is interpolated using hermite cubic interpolation function, while rotations θx and θy are interpolated using quadratic interpolation function. The element is developed to include stiffness and the electromechanical coupling of the piezoelectric sensor/actuator layers. The active vibration control performance of the piezolaminated smart composite plates has been studied by modeling them with the above element and applying various control strategies.


2019 ◽  
Vol 224 ◽  
pp. 05010
Author(s):  
Yi Ye ◽  
Miaoxian Guo

In this paper, an active vibration control platform is developed for milling processes. In this system, the workpiece is driven by a specially designed active platform to control the relative vibration between the tool and workpiece during milling processes. Numerical simulations are carried out to validate the effectiveness of the control platform. Results indicate that maximum stress of the hinge mechanism of the platform is far less than the yield limit of the material, and the designed platform can meet the use requirements in terms of the maximum displacement and natural frequency.


Sign in / Sign up

Export Citation Format

Share Document