Microimprinting Simulation of Anti-Bacterial Pattern on Stainless Steel Sheet

2014 ◽  
Vol 931-932 ◽  
pp. 349-353
Author(s):  
Pramote Koowattanasuchat ◽  
Numpon Mahayotsanun

The aim of this study was to investigate the effects of important factors in microimprinting, which could be used to create the anti-bacterial pattern on stainless steel sheets. The microimprinting process was modeled and simulated by using finite element analysis (FEA). The following factors were considered: forming steps, forming velocity, grain size, and friction coefficient. The simulation results showed that two-step forming helped reduce peak errors. Increasing forming velocity and friction coefficient tended to increase peak errors. The grain size effect was not noticeable because the selected grain sizes were much larger than that of the micro feature.

2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Ammar Adil Al-Bakri ◽  
Zainuddin Sajuri ◽  
Ahmad Kamal Ariffin ◽  
Mohammed Abdul Razzaq ◽  
Mohd Salehudin Fafmin

Specimen with rectangular cross-section usually used to measure the tensile properties of materials. However, the specimen size and thickness may affect the results. In this study, tensile and fracture behaviours of very thin 304 stainless steel sheet were investigated. The thickness of the stainless steel sheets investigated were 100 and 300 µm. Tensile samples were cut into dumbbell-shaped of rectangular cross-section with same width for both thickness according to ASTM E8. The results showed that 100 µm thin steel sheet exhibited higher tensile strength with no clear evidence of yielding as compared to 300 µm sheet. The fracture morphology images observed by scanning electron microscopy revealed that both specimens fracture in ductile mode. Formation of dimples on the fracture surface could be recognized easily in 300 µm sample at higher magnification as compared to 100 µm sample.


2005 ◽  
Vol 495-497 ◽  
pp. 363-368
Author(s):  
Soo Ho Park ◽  
Hyung Gu Kang ◽  
Yong Deuk Lee ◽  
Jae Chul Lee ◽  
Moo Young Huh

In order to investigate the effect of the reduction degree per rolling pass on the evolution of recrystallization textures and microstructures, the hot band of 17.5 Cr-1.1 Mo ferritic stainless steel sheets were cold rolled with lubrication according to two processing routes, by which different reduction degrees per pass were introduced. Rolling with a large number of passes led to the formation of fairly homogeneous rolling textures at all through-thickness positions. In contrast, cold rolling with large draughts resulted in pronounced texture gradients along the thickness direction. After recrystallization annealing, the texture maximum was obtained at {334}<483> in all samples regardless of the rolling routes and thickness layers. During subsequent annealing, recrystallization was observed to be faster in those grains with {111}<uvw> orientations, while it was retarded in grains having orientations close to {001}<110>.


2016 ◽  
Vol 851 ◽  
pp. 106-111
Author(s):  
Jamshid D. Shurdjanov ◽  
In Soo Kim

Duplex stainless steel was nitrided by sodium nitrate, NaNO3, salt bath from 592°C to 650°C for 1 to 10 hours. The microstructure, microhardness and tensile strength were investigated after nitriding of duplex stainless steel sheets. Microhardness of sample was increased from 279.7 HV to 296 HV after nitriding in bath of NaNO3+4.8%NaCl salt at 650°C for 8 hours. Tensile strength was increased from 880 to 939.36 MPa and elongation of duplex stainless steel sheet was decreased from 42% to 38% after nitriding in salt bath of NaNO3 at 650°C for 8 hours. The nitriding effect of NaNO3 salt is similar with KNO3 salt in duplex stainless steel sheet. NaNO3 salt is cheaper than KNO3 salt. Therefore, NaNO3 salt is more economical than KNO3 salt to nitride duplex stainless steel.


2007 ◽  
Vol 339 ◽  
pp. 343-347 ◽  
Author(s):  
Min Qiang Pan ◽  
Yong Tang ◽  
Long Sheng Lu ◽  
Zhen Ping Wan ◽  
X.K. Liu ◽  
...  

A passive microstructured mixer based on micro-ploughing technology with a multi-tooth tool is proposed. The mixer uses multiple three-dimensional nozzles to split one of the liquids into several micro-plumes. The fins on the surface of the nozzles induce a second liquid to generate turbulence around the local surface of the fins. The machining mechanism for fabricating 3D nozzles on a stainless steel sheet by micro-ploughing technology with a multi-tooth tool was studied. The machining process mainly involves four stages: tool-feeding, fin-forming, micro-hole-forming and tool-retracting. Simulation and flow visualization were used to evaluate its performance. The simulation results show the fin structure can induce local surface turbulence. The flow visualization indicates that when the flux is between 0.5ml/s and 3ml/s, the two liquids are fully mixed in 1second.


Sign in / Sign up

Export Citation Format

Share Document