The Main Obstacles to Popularizing the Building Life Cycle Cost Method in China and the Solving Strategies

2014 ◽  
Vol 935 ◽  
pp. 112-117
Author(s):  
Hao Xie ◽  
Jing Wu

Life Cycle Cost (LCC) method can not only help users make economic decisions on a construction project, but also have a positive effect on popularizing building energy-saving technologies and reducing building energy consumption. However, LCC has not received due attention in China. This paper analyzes the main obstacles to popularizing LCC in China and explores the solving strategies of promoting LCC in China by means of the functional process theoretical model.

2011 ◽  
Vol 71-78 ◽  
pp. 3297-3302
Author(s):  
Hong Jun Jia ◽  
Yun Chen

The building energy consumption is one of the biggest components of energy consumption in China. Based on the building life cycle energy consumption theory, this paper proposed a modified model, which extra considered the influence of building planning, design and building materials’ recycle to energy consumption. This paper analyzed every building stage’s energy consumption and provided saving measures. According to the present situation of China, this paper explored new ideas on building energy saving.


2014 ◽  
Vol 584-586 ◽  
pp. 1909-1912
Author(s):  
Qiang Du ◽  
Chao Yue Yin ◽  
Qiong Li Zhang ◽  
Yi Xiu Chen

Based on a systemic analysis of the factors which might influence building energy efficiency, a cluster of corresponding indicators are proposed and screened for different stages in the whole life-cycle of buildings. A questionnaire survey was conducted to confirm the weights of the selected indicators and identify critical control objects for building energy saving. This research provides the methodology for selecting appropriate control objects for building energy-efficiency under various management scenarios.


2013 ◽  
Vol 671-674 ◽  
pp. 2154-2157
Author(s):  
Zhi Neng Tong

Energy saving one must first be a good envelope, then considered from equipment technology on energy saving. From the building life cycle perspective, in the design of the ecological energy saving throughout, let the building has good ventilation, and the integration of the sunshade structure, good thermal insulation effect of the retaining structure, reasonable equipment systems, these measures will certainly to building energy saving play a positive role. According to the above principle scheme comparison and selection, saving energy consumption, better effect is obtained.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


2018 ◽  
Vol 150 ◽  
pp. 06040
Author(s):  
M. H. Amlus ◽  
Amlus Ibrahim ◽  
Ahmad Zaidi Abdullah ◽  
Nurhafiza Azizan ◽  
Ummi Naeimah Saraeh

Lately Malaysia energy consumption versus generation rapidly shows increasing due to increasing of load. This phenomenon happened following to advanced country development. Lacking on design and without energy management approach the energy consumption and monthly electrical bill will steadily increased and support the increasing of world carbon emission. Therefore the aim of this work is to approach the simplest innovation task-energy audit , which is load-apportioning strategy. This approach using matching the usage of equipment with fully utilized space and reschedules the time of usage. A one week data was collected by logged power meter at main switchboard at selected building using Fluke Power Recorder. From the data collected, current usage of every load can be determine, then load will be arrange into a group with same portion and same time of usage. The result shows clearly the energy consumption for every single day and indicates the highest and lowest peak. From this work the apportioning strategy implemented by rearrange the load following type of room application. After the arrangement, new measurement was taken and a very good result was established. This work also can be further apply for a huge load that can be save a lot of money for owner especially government by energy saving.


2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


2012 ◽  
Vol 1 (1) ◽  
pp. 9
Author(s):  
Ling Wang

<p>Based on the national situation and combined with status of building energy consumption, building energy saving development planning is the most effective measure to deal with the building energy consumption problem in China. Given the building energy saving development planning problem, proposals are given in terms of the planning patterns, planning flow and the organization, which would be of practical value to the implementation of building efficiency planning in China at current stage.</p>


Sign in / Sign up

Export Citation Format

Share Document