Development of Permanent Magnet Generator Used for Magnetic Field Assisted Micro Electroforming Technology

2014 ◽  
Vol 936 ◽  
pp. 1716-1719 ◽  
Author(s):  
Hui Juan Li ◽  
Ping Mei Ming ◽  
Xiao Hui Bao ◽  
Xiao Dong Zhang ◽  
Xiang Yang Bi

To provide appropriately high and uniform magnetic field for micro electroforming process, a permanent magnet generator was specially developed which based on the fundamental process requirements. On the basis of determining the number of permanent magnet combinations numerically. Mainly, the geometrical shape of the permanent magnet blocks and magnetic circuit structure were optimized, and then the working gap regulating mechanism for this generator was designed. Utilizations indicated that the developed generator met the requirements well.

2010 ◽  
Vol 97-101 ◽  
pp. 2622-2627
Author(s):  
Hong Guang Jiao ◽  
Peng Liu ◽  
Zhan Xu Tie

To solve the conflict between separation space and magnetic field intensity, an original magnetic circuit structure system of permanent magnet magnetic filter is designed by utilizing multi-dimensional magnet extrusion technologies, with multi-block NdFeB magnets of different structures and magnetization directions. The inside diameter of the ring magnets and ring soft iron is taken as separating space. To inspect the distribution of the magnetic field characteristics of magnetic circuit system, mathematical model is established, and the designed magnetic circuit system is simulated, taking advantage of the electromagnetic software Magnet. The simulation results show that a larger separating space and higher background magnetic density can be achieved simultaneously by means of the organic magnetic circuit system design, when the thickness of ring soft iron is 4mm and the diameter ratio (outside diameter to the diameter) of ring magnets is 10/3. The highest magnetic induction intensity of 29.2 mm separating space is 1.5T, which provides the basis for permanent magnet magnetic circuit design.


2011 ◽  
Vol 328-330 ◽  
pp. 36-40 ◽  
Author(s):  
Jian Wei Ma ◽  
Wan Jian Yin ◽  
Wan Hai Yu ◽  
Qing Shan Ji

The rotor of claw-pole permanent magnet generator is constructed by two flangeHs with claw and a ringH of Nd-Fe-B permanent magnet magnetized axially,H axial fluxH is transformedH effectiveH radial fluxH, the polarityH of adjacent claw-poles is opposite, N poles and S poles array alternately. Based on design theory of permanent magnet generator, major parametersH of generator is determineHd. Using equivalent magnetic circuit method, the magnetic path of generator is analyzed, permeance and flux are calculated, thus the claw-pole permanent magnet generator is designed, it possesses high reliability, simple processH and effective voltage-stabilized characteristic.


2020 ◽  
Vol 15 (1) ◽  
pp. 150-160
Author(s):  
Kishor Kaphle ◽  
Gyanendra Karki ◽  
Amrit Panthi

 The magnetic field of different geometry of the permanent magnet is analytically calculated by using basic principles of the magnetism in very easier approach. Concept of origin shifting and geometrical shape transformation are used to formulate the formula for cuboidal, cubical and cylindrical permanent magnets. This concept can be used for the analysis of magnetic field distribution in space around for permanent magnet as well as electromagnet in a very easier approach. Handy and simplified software is made to calculate the magnetic field due to permanent magnet and electromagnet at any desired position on space. Magnetic field visualization is also done in both magnitude and direction by using MATLAB.  


2011 ◽  
Vol 52-54 ◽  
pp. 285-290
Author(s):  
Yi Chang Wu ◽  
Feng Ming Ou ◽  
Bo Wei Lin

The prediction of the magnetic field is a prerequisite to investigate the motor performance. This paper focuses on the magnetic field estimation of surface-mounted permanent-magnet (SMPM) motors based on two approximations, i.e., the magnetic circuit analysis and the finite-element analysis (FEA). An equivalent magnetic circuit model is applied to analytically evaluate the magnetic field of a SMPM motor with exterior-rotor configuration. The two-dimensional FEA is then applied to numerically calculate the magnetic field and to verify the validity of the magnetic circuit model. The results show that the errors between the analytical predictions and FEA results are less than 6%. It is of benefit to further design purposes and optimization of SMPM motors.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huihui Geng ◽  
Xueyi Zhang ◽  
Tao Si ◽  
Lanian Tong ◽  
Qingzhi Ma ◽  
...  

Permanent magnet generator (PMG) for vehicles has attracted more and more attention because of its high efficiency, high power density, and high reliability. However, the weak main air-gap magnetic field can affect the output performance and the normal use of electrical equipment. Aiming at the problem, this paper took the rotor magnetomotive force (MMF), the direct influencing parameter of the main air-gap magnetic field, as the research object, deduced the analytical expression of rotor MMF of the built-in radial PMG in detail, and analyzed its main influencing factors in analytical expression, including the permanent magnet steel (PMS) material, the thickness of PMS in magnetizing direction, the vertical length of the inner side of PMS, and the effective calculation length of PMS. Based on this, the rotor parameters were optimized to obtain the best values. After that, the finite element simulation and prototype test of the optimized generator were carried out. The comparative analysis results showed that the optimized rotor parameters could effectively improve the rotor MMF and optimize the output performance of the generator.


2017 ◽  
Vol 67 (6) ◽  
pp. 725-732
Author(s):  
Mun-Ho KWON ◽  
Myung-Kyu KU ◽  
Jaeyeon SI ◽  
Ho-Meoyng CHOI*

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2437
Author(s):  
Jonathan Sjölund ◽  
Sandra Eriksson

Electromagnetic modelling of electrical machines through finite element analysis is an important design tool for detailed studies of high resolution. Through the usage of finite element analysis, one can study the electromagnetic fields for information that is often difficult to acquire in an experimental test bench. The requirement for accurate result is that the magnetic circuit is modelled in a correct way, which may be more difficult to maintain for rare earth free permanent magnets with an operating range that is more likely to be close to non-linear regions for the relation between magnetic flux density and magnetic field strength. In this paper, the inclination angles of the magnetic flux density, magnetic field strength and magnetization are studied and means to reduce the inclination angles are investigated. Both rotating and linear machines are investigated in this paper, with different current densities induced in the stator windings. By proper design of the pole shoes, one can reduce the inclination angles of the fields in the permanent magnet. By controlling the inclination angles, one can both enhance the performance of the magnetic circuit and increase the accuracy of simpler models for permanent magnet modelling.


Sign in / Sign up

Export Citation Format

Share Document