Determination of Char-CO2 Gasification Rate through Reaction Product

2014 ◽  
Vol 953-954 ◽  
pp. 1026-1030
Author(s):  
Yong Zhao ◽  
Jian Sheng Zhang

This paper presents gasification kinetic parameters generated for Japanese lignite coal char reacting with carbon dioxide and the method for obtaining them. The experiments were conducted in a PTGA at atmospheric pressure within a temperature range of 1148K-1223K, and a mass spectrometer (MS) is coupled with PTGA to obtain the concentrations of product gas. The experiments were carried out with isothermal method, and kinetic parameters were determined through the analysis of the weight changes of coal char and the concentrations of products respectively. The effect of CO2 partial pressure on reaction rate was analyzed by nth order rate equation. It was found that the activation energy of char-CO2 reaction obtained from weight loss curve and product concentrations were 187.9kJ/mol and 187.0kJ/mol respectively, and the reaction order n were 0.24 and 0.222, proving MS a feasible method for kinetics research. Through the comparison, the method to obtain the kinetic data by concentrations of gas products was determined, and a more clear understanding of the gasification process was established.

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 715
Author(s):  
Yong He ◽  
Ye Yuan ◽  
Zhihua Wang ◽  
Longlong Liu ◽  
Jiaxin Tan ◽  
...  

The gasification experiments of coal chars with CO2 were carried out isothermally, with K, Ca, Ni, and Zn chloride catalysts, adopting a thermal gravimetric analyzer (TGA) from 800 to 1100 °C. The kinetic characteristic of the samples were described using the volumetric model (VM), the grain model (GM), and the random pore model (PRM). The morphology patterns of the samples were tested applying X-ray diffraction (XRD) and the catalytic mechanisms concerning the phase changes were proposed. The results confirm that the gasification rate and char reactivities are enhanced by K, Ca and Ni chlorides, while ZnCl2 inhibited the process. The catalysis ability shows the following cation order: Ca > K > Ni > Zn. Among the models described above, PRM was proven to give the best fitting value and hence adopted to kinetics parameters calculation. The activation energies in promoting conditions were lower than that of the uncatalyzed cases. In view of the catalytic mechanism, the K metals tend to form intermediate complexes and repeatedly connect with coal char, while the Ca species may follow the oxidation-reduction mechanism and the Ni metals catalyze the gasification process.


1970 ◽  
Vol 65 (1_Suppl) ◽  
pp. S104-S121 ◽  
Author(s):  
E. E. Baulieu ◽  
J. P. Raynaud ◽  
E. Milgrom

ABSTRACT A brief review of the characteristics of steroid binding proteins found in the plasma and in some target organs is presented, followed by some general remarks on binding »specificity« and binding parameters. Useful techniques for measuring binding parameters at equilibrium are reported, both those which keep the equilibrium intact and those which implicate its disruption. A concept is developed according to which the determination of a specific steroid binding protein is based on the »differential dissociation« of the several steroid binding complexes present in most biological mixtures. Methods which allow determination of the kinetic parameters of the binding systems are also presented. Various representations of the binding and therefore different modes of graphic representation and calculation are discussed, including the recent »proportion graph« method.


1997 ◽  
Vol 62 (10) ◽  
pp. 1511-1526
Author(s):  
María-Luisa Alcaraz ◽  
Ángela Molina

A theoretical study of the potential-time response to sinusoidal current applied to static and dynamic electrodes for regeneration processes is presented. Methods for determination of the regeneration fraction, rate constant of the chemical reaction and heterogeneous kinetic parameters are proposed.


1991 ◽  
Vol 32 (8) ◽  
pp. 1311-1323
Author(s):  
KG Parhofer ◽  
P Hugh ◽  
R Barrett ◽  
DM Bier ◽  
G Schonfeld

2021 ◽  
pp. 014459872098303
Author(s):  
Sibo Wang ◽  
Zhiguang Song ◽  
Jia Xia ◽  
Yuan Gao ◽  
YaoPing Wang ◽  
...  

In this study, the methane adsorption capacity of kerogen isolated from the Cambrian, Silurian, and Permian shales and the impact of soluble organic matter (SOM) on the adsorption capacity of these shales were investigated. The results reveal that 1) the adsorption capacity of kerogen varies in a broad range, from 14.48 to 23.22 cm3/g for the Cambrian kerogens, from 15.50 to 36.06 cm3/g for the Silurian kerogens, and from 10.71 to 11.15 cm3/g for the Permian kerogens; 2) the kerogen adsorption accounts for 33.67–70.23% of the total adsorption capacity of these Palaeozoic extracted shales, demonstrating that kerogen is the primary adsorbing substance in shales; 3) the adsorption isotherms of kerogen in highly mature Cambrian and Silurian shales are similar to those of Triassic coal, while the isotherms of kerogen in the relatively immature Permian shales are similar to those of the immature oil shales; and 4) the SOM demonstrates a significant impact on the adsorption capacity of shales as the removal of SOM can cause a maximum increase of 34.29% or a decrease of 23.36% in the total adsorption capacity of shales. However, there is no clear understanding of the impact of SOM on the methane sorption of shales.


Sign in / Sign up

Export Citation Format

Share Document