The Effect of Fillet Geometry on Stress in Weld-Bonded Joints

2010 ◽  
Vol 97-101 ◽  
pp. 767-770 ◽  
Author(s):  
Jia Ling Yan ◽  
Min You ◽  
Xiao Ling Zheng ◽  
Ding Feng Zhu ◽  
Mei Rong Zhao

The influence of fillets with different geometry shape on the stress distribution in aluminum alloy weld-bonded single lap joint was investigated using elasto-plastic finite element method (FEM). The results show that it is advantageous of reducing stress concentration in adhesive layer near the ends of the lap zone in single lap weld-bonded aluminum joints and part of the stress transferring from adhesive layer to the nugget when the joints with a couple of right triangle fillets over other shapes. The load-bearing capacity of the whole weld-bonded joints may be improved. The full-triangular fillet is recommended that it be more advantageous of decreasing the stress peak value and making the stress distribution in overlap zone more uniform.

2010 ◽  
Vol 450 ◽  
pp. 502-505 ◽  
Author(s):  
Min You ◽  
Jia Ling Yan ◽  
Xiao Ling Zheng ◽  
Nan Feng Xiong ◽  
Ding Feng Zhu

The influence of the fillet with different elastic modulus on the stress distributed in weld-bonded aluminum alloy single lap joint was investigated using elasto-plastic finite element method. The results show that the peak values of the stress along the mid-bondline at the points near the fillet edge were increased as the elastic modulus of the fillet increased. But at points near the both ends of the adherend in over lap zone as well as in the region of the nugget the peak stresses were decreased except longitudinal stress Sx. The peak value of Seqv decreased first, and then it increased again as the elastic modulus in fillet increased. The load-bearing capacity of the whole weld-bonded joints may be improved for the fillet with Adhesive B (825 MPa) for the relative high stress region in nugget was wider and the stress distribution in overlap zone was more uniform.


1981 ◽  
Vol 48 (2) ◽  
pp. 331-338 ◽  
Author(s):  
F. Delale ◽  
F. Erdogan

In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.


2015 ◽  
Vol 732 ◽  
pp. 305-308
Author(s):  
Milan Dvořák ◽  
Milan Růžička

This article describes experimental research on properties of adhesive joints with embedded optical fibers. The objective was to determine whether fibers may cause a reduction of mechanical properties of joints. Specimens with single-lap joint for tensile test were made with various configurations of optical fibers in an adhesive layer. Shear strength and fatigue life tests were performed and results were evaluated using the statistical analysis methods.


2011 ◽  
Vol 230-232 ◽  
pp. 1345-1349 ◽  
Author(s):  
Cun Jun Chen ◽  
Min You ◽  
Hai Zhou Yu ◽  
Jian Li Li ◽  
Chun Zhi Mei

The temperature field in the adhesively bonded single lap steel joint after a thermal shock (100 °C, 10s) and the influence of the restraint on the thermal stress in the joint was investigated using elasto-plastic finite element method (FEM). The results showed that the temperature in the overlap region is symmetrically distributed to the bondline after the thermal shock. Five kinds of constraints were applied in the study and it is found that the peak value of the thermal stresses were occurred at the points near the free ends of the adherend lap zone along the mid-bondline under the action of constraining the adherends in the direction of both transversal and longitudinal. The symbol of the longitudinal stress Sx and peel stress Sy is negative.


2012 ◽  
Vol 602-604 ◽  
pp. 2092-2095 ◽  
Author(s):  
Xiao Ling Zheng ◽  
Jia Ling Yan ◽  
Min You ◽  
Jiang Cheng Zhang ◽  
Lai Hu Song

The effect of metal block as the fillet on the stress distributed in weld-bonded single lap steel joint was investigated using elasto-plastic finite element method (FEM). The results from the numerical simulation showed that it is beneficial when the joints with a couple of right triangle metal block were adhered to both ends of the over lap. It is advantageous of reducing the peak stress in the adhesive layer near the ends of the lap zone in weld-bonded single lap steel joints so that the stress distribution in overlap zone was improved. The load-bearing capacity of the weld-bonded single lap steel joints may be elevated. There is no evidential difference in the effects between the steel and aluminum block.


1985 ◽  
Vol 29 ◽  
pp. 57-62
Author(s):  
A. Lankford ◽  
C. S. Barrett ◽  
Paul Predecki

XRD has been found to be a useful technique for investigating both surface and interior stresses in. adhesive bonded joints. For the interior stresses, to gain access to the joint interface, adherends were chosen such that one adherend was relatively transparent to the X-radiation used and the other was not. Incident X-rays then penetrated the first adherend and the adhesive, and were diffracted from just below the surface of the second adherend.In prior work it was shown that the measured stresses due to an applied load agreed quite well with stresses calculated for the same joint using the TEXGAP-2D finite element program, except at one extremity of the bond. One explanation proposed for the discrepancy was that a small debond was present at this extremity. In the present study, therefore, an investigation was made of a joint contfli'nitig an intentional debond at this extremity.


Sign in / Sign up

Export Citation Format

Share Document