The Oil Lubricated Sliding Wear Behavior of In Situ TiB2 Partical-Reinforced Al-10Sn Matrix Composites

2010 ◽  
Vol 97-101 ◽  
pp. 789-792 ◽  
Author(s):  
Guo Ming Cui ◽  
Xing Xia Li ◽  
Jian Min Zeng

Al-10Sn matrix composites reinforced by TiB2 particles were fabricated by Mixed Salt Reaction in situ synthesis process. The oil lubricated sliding wear tests of composites and matrix alloy were conducted on a small thrust ring versus disc wear testing machine at room temperature under different applied loads and the wear surfaces were observed using SEM. The results indicate that the coefficient of friction, friction temperature, and wear weight loss increase with the increase of applied loads, but compared with matrix alloy, the composites exhibit better anti-friction property and higher wear resistance. The analysis of wear surface suggests that light ploughing is predominant for composites and matrix alloy at low loads, and ploughing is still predominant for composites at high loads, but adhesion and delamination are predominant for matrix alloy at high loads

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Qing Zhang ◽  
Jie Gu ◽  
Shuo Wei ◽  
Ming Qi

The dry sliding wear behavior of the Al-12Si-CuNiMg matrix alloy and its composite reinforced with Al2O3 fibers was investigated using a pin-on-disk wear-testing machine. The volume fraction of Al2O3 fibers in the composite was 17 vol.%. Wear tests are conducted under normal loads of 2.5, 5.0, and 7.5 N, and sliding velocities of 0.25, 0.50, and 1.0 m/s. Furthermore, the worn surfaces of the matrix alloy and the composite were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the wear resistance of the composite was inferior to that of the matrix alloy, which could be attributed to the high content of reinforcement and casting porosities in the composite. Worn-surface analysis indicates that the dominant wear mechanisms of both materials were abrasive wear and adhesive wear under the present testing conditions.


2012 ◽  
Vol 601 ◽  
pp. 26-30 ◽  
Author(s):  
Guo Ming Cui ◽  
Xing Xia Li ◽  
Jian Min Zeng

To develop a new bearing material with promising tribological properties, low cost and without harmful elements, the TiB2 particle-reinforced Al-10Sn matrix composites were fabricated by Mixed Salt Reaction synthesis process. The solidification microstructure of the composites was investigated by optical microscope and scanning electron microscope. The results indicate that the grains of α-Al matrix are fine, the TiB2 particle size is less than 1.5μm, and the agglomeration of TiB2 particles is mainly present at the boundary of α-Al phase, where the mechanical mixture of TiB2 and β-Sn was observed. The oil lubricated sliding friction tests of composites and matrix alloy were conducted on a small thrust ring versus disc friction testing machine under different loads. The results indicate that, at low load (200N), both of composites and matrix alloy have a conspicuous running-in period and exhibit a better antifriction property with the coefficient of friction (hereafter COF) being 0.017 and 0.015, respectively. However, at high load (400N), the COF of composites and matrix alloy is approximately 0.080 and 0.17, with the frictional temperature being 58°C and 75°C, respectively. The composites exhibit higher bearing capacity and excellent antifriction


2014 ◽  
Vol 592-594 ◽  
pp. 170-174 ◽  
Author(s):  
Madeva Nagaral ◽  
V. Auradi ◽  
S.A. Kori

This present paper is an investigation made to study the un-lubricated sliding wear behavior of Al6061 alloy composites reinforced with graphite particulates of size 100-125 μm. The content of graphite in the alloy was varied from 6-9% in steps of 3 wt. %. The liquid metallurgy technique was used to fabricate the composites. A pin-on-disc wear testing machine was used to evaluate the volumetric wear loss, in which a hardened EN32 steel disc was used as the counter face. The results indicated that the volumetric wear loss of the composites was lesser than that of the Al6061 matrix alloy and it further decreased with the increase in graphite content up-to 6 wt.%. For composites containing 9 wt. % of graphite particulates, the volumetric wear loss was more than that of 6wt. % composites, but lesser than base matrix alloy. However, the material loss in terms of wear volume increased with the increase in load and sliding speed, both in case of composites and the alloy.


2017 ◽  
Vol 52 (17) ◽  
pp. 2281-2288 ◽  
Author(s):  
S Sivakumar ◽  
S Senthil Kumaran ◽  
M Uthayakumar ◽  
A Daniel Das

The dry sliding wear behaviour of LM 24 aluminum alloy composites reinforced with garnet particles was evaluated. Stir casting technique was used to fabricate the composites. A pin-on-disc wear-testing machine was used to evaluate the wear rate, in which an EN 24 steel disc was used as the counterface. Results indicated that the wear rates of the composites were lower than that of the matrix alloy and further decreased with the increase in garnet content. However, in both unreinforced and reinforced composites, the wear rate increased with the increase in load and the sliding speed. Increase in the applied load increased the wear severity by changing the wear mechanism from abrasion to particle cracking-induced delamination wear. It was found that with the increase in garnet content, the wear resistance increased monotonically. The observations have been explained using scanning electron microscopy analysis of the worn surfaces and the subsurface of the composites. In this work, the most influencing input and output parameters have been performed and the process parameters have been prioritized using genetic algorithm. Genetic algorithm is used to optimize the most influencing input as well as output process parameters. The practical significance of applying genetic algorithm to dry sliding wear behavior process has been validated by means of computing the deviation between predicted and experimentally obtained wear behavior of metal matrix composite.


2014 ◽  
Vol 984-985 ◽  
pp. 319-325 ◽  
Author(s):  
V. Bharath ◽  
Madeva Nagaral ◽  
V. Auradi ◽  
S.A. Kori

In the current investigation an attempt has been made and to produce ceramic Al2O3particulate reinforced 6061Al matrix composites by liquid metallurgy route (stir casting technique) and to study the dry sliding wear properties of the prepared composites. The amount of ceramic Al2O3particulate reinforcement addition was maintained at 9 and 12wt%. During the preparation of each composite the ceramic reinforcements were introduced in a novel way which involves three stage additions of reinforcements during melt stirring. The wear tests were conducted using pin on disc wear testing machine on 6061Al matrix before and after addition of Al2O3reinforcements Wear test results demonstrated the superior wear resistance of the composites over monolithic 6061Al alloy matrix. Key Words: MMC’s, Al2O3particulates, 6061Al, stir-casting


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4703-4708 ◽  
Author(s):  
S. C. SHARMA ◽  
M. KRISHNA ◽  
D. BHATTACHARYYA

In the present investigation, an attempt has been made to evaluate the wear rate of ZA-27 alloy composites reinforced with fly ash particles from 1 to 3 wt% in steps of 1 wt%. The compo-casting method has been used to fabricate the composites using Raichur fly ash of average size 3-5 microns. The wear specimens are tested under dry conditions using a pin-on-disc sliding wear testing machine with wear loads of 20-120 N in steps of 20 N, and the sliding distances in the range of 0.5 km to 2.5 km. The results indicate that the wear rate of the composites is less than that of the matrix alloy and it further decreases with the increase in fly ash content. However, the material loss in terms of wear rate and wear volume increases with the increase in load and sliding distance, both in the cases of composites and the matrix alloy. An increase in the applied load increases the wear severity by changing the wear mechanism from abrasion to particle-cracking induced delamination wear. It is found that with the increase in fly ash content, the wear resistance increases monotonically. The observations have been explained using scanning electron microscope (SEM) analysis of the worn surfaces of the composites.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1663
Author(s):  
Fei Chen ◽  
Binbin Wang ◽  
Zhiqiang Cao

In situ ZA27/TiB2 composites were synthesized successfully by diluting the in situ Al/TiB2 composite, which was used as a master alloy. The microstructure and hardness of the developed in situ composites have been investigated. Results have shown that TiB2 particles distribute uniformly through the matrix and significantly refine the matrix grain. The hardness of the composites was higher than that of the matrix alloy and increased with the increasing TiB2 content. The dry sliding wear behavior under heavy loads and high rotation speed were studied in detail by using a pin-on-disc wear tester at room temperature. The results revealed that the wear resistance of the composites increased monotonically with the increase in the TiB2 content. The composites had a lower coefficient of friction, friction temperature, wear rate, and specific wear rate especially under high loads when compared with the matrix alloy. An increase in the applied load increased the wear severity by changing the wear mechanism from abrasion and oxidation to adhesive wear. The composites possess better adhesive wear resistance properties compared with the matrix, which shows obvious adhesive wear as the load increased to 36 N, while the ZA27/3.0% TiB2 composite did not show adhesive wear until the load increased to 54 N.


Sign in / Sign up

Export Citation Format

Share Document