DRY SLIDING WEAR BEHAVIOUR OF FLYASH REINFORCED ZA-27 ALLOY BASED METAL MATRIX COMPOSITES

2006 ◽  
Vol 20 (25n27) ◽  
pp. 4703-4708 ◽  
Author(s):  
S. C. SHARMA ◽  
M. KRISHNA ◽  
D. BHATTACHARYYA

In the present investigation, an attempt has been made to evaluate the wear rate of ZA-27 alloy composites reinforced with fly ash particles from 1 to 3 wt% in steps of 1 wt%. The compo-casting method has been used to fabricate the composites using Raichur fly ash of average size 3-5 microns. The wear specimens are tested under dry conditions using a pin-on-disc sliding wear testing machine with wear loads of 20-120 N in steps of 20 N, and the sliding distances in the range of 0.5 km to 2.5 km. The results indicate that the wear rate of the composites is less than that of the matrix alloy and it further decreases with the increase in fly ash content. However, the material loss in terms of wear rate and wear volume increases with the increase in load and sliding distance, both in the cases of composites and the matrix alloy. An increase in the applied load increases the wear severity by changing the wear mechanism from abrasion to particle-cracking induced delamination wear. It is found that with the increase in fly ash content, the wear resistance increases monotonically. The observations have been explained using scanning electron microscope (SEM) analysis of the worn surfaces of the composites.

2014 ◽  
Vol 550 ◽  
pp. 48-52
Author(s):  
P. Sankaravadivel ◽  
N. Babu ◽  
M. Samuel Gemsprim ◽  
N. Natarajan

The tribological properties of metal matrix composites (MMC’s) is of interest in several applications like bearing sleeves, piston and cylinder liners, aircraft brakes etc. The wear behaviour of unreinforced as well as B4C particles reinforced phosphor-bronze alloy composite material is studied as a function of sliding speed and applied loads under un-lubricated conditions. The content of B4C particles in the composite was varied from 1-6% in steps of 2% by weight. A pin on disc wear testing machine was used to evaluate the wear rate, in which cast iron disc was used as the counterface. Loads of 10-30N in steps of 10N and speeds of 1.30, 1.83 and 2.30 m/s was employed. The results indicated that the wear rate of both the composites and the matrix alloy increased with increase in load and sliding speed. However, the composites exhibited lower wear rate than the alloys.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Qing Zhang ◽  
Jie Gu ◽  
Shuo Wei ◽  
Ming Qi

The dry sliding wear behavior of the Al-12Si-CuNiMg matrix alloy and its composite reinforced with Al2O3 fibers was investigated using a pin-on-disk wear-testing machine. The volume fraction of Al2O3 fibers in the composite was 17 vol.%. Wear tests are conducted under normal loads of 2.5, 5.0, and 7.5 N, and sliding velocities of 0.25, 0.50, and 1.0 m/s. Furthermore, the worn surfaces of the matrix alloy and the composite were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the wear resistance of the composite was inferior to that of the matrix alloy, which could be attributed to the high content of reinforcement and casting porosities in the composite. Worn-surface analysis indicates that the dominant wear mechanisms of both materials were abrasive wear and adhesive wear under the present testing conditions.


2017 ◽  
Vol 52 (17) ◽  
pp. 2281-2288 ◽  
Author(s):  
S Sivakumar ◽  
S Senthil Kumaran ◽  
M Uthayakumar ◽  
A Daniel Das

The dry sliding wear behaviour of LM 24 aluminum alloy composites reinforced with garnet particles was evaluated. Stir casting technique was used to fabricate the composites. A pin-on-disc wear-testing machine was used to evaluate the wear rate, in which an EN 24 steel disc was used as the counterface. Results indicated that the wear rates of the composites were lower than that of the matrix alloy and further decreased with the increase in garnet content. However, in both unreinforced and reinforced composites, the wear rate increased with the increase in load and the sliding speed. Increase in the applied load increased the wear severity by changing the wear mechanism from abrasion to particle cracking-induced delamination wear. It was found that with the increase in garnet content, the wear resistance increased monotonically. The observations have been explained using scanning electron microscopy analysis of the worn surfaces and the subsurface of the composites. In this work, the most influencing input and output parameters have been performed and the process parameters have been prioritized using genetic algorithm. Genetic algorithm is used to optimize the most influencing input as well as output process parameters. The practical significance of applying genetic algorithm to dry sliding wear behavior process has been validated by means of computing the deviation between predicted and experimentally obtained wear behavior of metal matrix composite.


2014 ◽  
Vol 592-594 ◽  
pp. 170-174 ◽  
Author(s):  
Madeva Nagaral ◽  
V. Auradi ◽  
S.A. Kori

This present paper is an investigation made to study the un-lubricated sliding wear behavior of Al6061 alloy composites reinforced with graphite particulates of size 100-125 μm. The content of graphite in the alloy was varied from 6-9% in steps of 3 wt. %. The liquid metallurgy technique was used to fabricate the composites. A pin-on-disc wear testing machine was used to evaluate the volumetric wear loss, in which a hardened EN32 steel disc was used as the counter face. The results indicated that the volumetric wear loss of the composites was lesser than that of the Al6061 matrix alloy and it further decreased with the increase in graphite content up-to 6 wt.%. For composites containing 9 wt. % of graphite particulates, the volumetric wear loss was more than that of 6wt. % composites, but lesser than base matrix alloy. However, the material loss in terms of wear volume increased with the increase in load and sliding speed, both in case of composites and the alloy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sakthi Sadhasivam RM ◽  
Ramanathan K. ◽  
Bhuvaneswari B.V. ◽  
Raja R.

Purpose The most promising replacements for the industrial applications are particle reinforced metal matrix composites because of their good and combined mechanical properties. Currently, the need of matrix materials for industrial applications is widely satisfied by aluminium alloys. The purpose of this paper is to evaluate the tribological behaviour of the zinc oxide (ZnO) particles reinforced AA6061 composites prepared by stir casting route. Design/methodology/approach In this study, AA6061 aluminium alloy matrix reinforced with varying weight percentages (3%, 4.5% and 6%) of ZnO particles, including monolithic AA6061 alloy samples, is cast by the most economical fabrication method, called stir casting. The prepared sample was subjected to X-ray photoelectron spectroscopy (XPS) analysis, experimental density measurement by Archimedian principle and theoretical density by rule of mixture and hardness test to investigate mechanical property. The dry sliding wear behaviour of the composites was investigated using pin-on-disc tribometer with various applied loads of 15 and 20 N, with constant sliding velocity and distance. The wear rate, coefficient of friction (COF) and worn surfaces of the composite specimens and their effects were also investigated in this work. Findings XPS results confirm the homogeneous distribution of ZnO microparticles in the Al matrix. The Vickers hardness result reveals that higher ZnO reinforced (6%) sample have 34.4% higher values of HV than the monolithic aluminium sample. The sliding wear tests similarly show that increasing the weight percentage of ZnO particles leads to a reduced wear rate and COF of 30.01% and 26.32% lower than unreinforced alloy for 15 N and 36.35% and 25% for 20 N applied load. From the worn surface morphological studies, it was evidently noticed that ZnO particles dispersed throughout the matrix and it had strong bonding between the reinforcement and the matrix, which significantly reduced the plastic deformation of the surfaces. Originality/value The uniqueness of this work is to use the reinforcement of ZnO particles with AA6061 matrix and preparing by stir casting route and to study and analyse the physical, hardness and tribological behaviour of the composite materials.


2021 ◽  
Vol 67 (1-2) ◽  
pp. 27-35
Author(s):  
Idawu Yakubu Suleiman ◽  
Auwal Kasim ◽  
Abdullahi Tanko Mohammed ◽  
Munir Zubairu Sirajo

This paper aims to investigate the mechanical (tensile, hardness, impact, elongation), microstructure and wear behaviours of aluminium alloy reinforced with mussel shell powder (MSP) at different weight percentages (0 wt. % to 15 wt. %) at 3 wt. % interval. The mussel shell powder was characterized by X-ray fluorescence (XRF). The matrix and the composites’ morphology were studied using a scanning electron microscope attached with energy dispersive spectroscopy for the distribution of mussel shell powder particles within the matrix. The wear behaviour of the alloy and composites produced at various reinforcements were carried out using a Taber abrasion wear-testing machine. The XRF showed the compositions of MSP to contain calcium oxide (95.70 %), silica (0.83 %) and others. Mechanical properties showed that tensile values increase with increases in MSP, hardness value increases from 6 wt. % to 15 wt. % of MSP. The impact energy decreased from 42.6 J at 3 wt. % to 22.6 J at 15 wt. %; the percentage elongation also decreased from 37.4 % at 3 wt. % to 20.5 % at 15 wt. % MSP, respectively. The bending stress results increase with increases in the percentage of reinforcement. The morphologies revealed that uniform distribution of MSP within the matrix resulted to improvement in mechanical properties. The wear resistance of the composites increases with increase in the applied load and decreases with increases in the weight percentage of MSP and can be used in the production of brake pads and insulators in the automobile industry.


Author(s):  
G Girish ◽  
V Anandakrishnan

In this work, the dry sliding wear behaviour of recursively friction stir processed AA7075 was investigated using a pin-on-disc wear testing apparatus. The microstructure of the processed specimen was probed using optical microscopy, transmission electron microscopy and atomic force microscopy. Experiments were conducted using Taguchi experimental design by varying three different parameters like load, sliding velocity and sliding distance, and the analysis of variance was performed to identify the influence of the parameters over the wear rate. From the main effect plot, the combination of 9.81 N of load, 2 m/s of sliding velocity and a sliding distance of 2000 m was identified as the optimum levels that minimize the wear rate. The regression model was developed to calculate the wear rate, and the validation test was performed with the optimum parameter combination and compared with the experimental results. Wear tracks were examined using field-emission scanning electron microscopy to identify the type of wear mechanism.


2010 ◽  
Vol 97-101 ◽  
pp. 789-792 ◽  
Author(s):  
Guo Ming Cui ◽  
Xing Xia Li ◽  
Jian Min Zeng

Al-10Sn matrix composites reinforced by TiB2 particles were fabricated by Mixed Salt Reaction in situ synthesis process. The oil lubricated sliding wear tests of composites and matrix alloy were conducted on a small thrust ring versus disc wear testing machine at room temperature under different applied loads and the wear surfaces were observed using SEM. The results indicate that the coefficient of friction, friction temperature, and wear weight loss increase with the increase of applied loads, but compared with matrix alloy, the composites exhibit better anti-friction property and higher wear resistance. The analysis of wear surface suggests that light ploughing is predominant for composites and matrix alloy at low loads, and ploughing is still predominant for composites at high loads, but adhesion and delamination are predominant for matrix alloy at high loads


2011 ◽  
Vol 189-193 ◽  
pp. 1647-1651
Author(s):  
Ying Wang ◽  
Yong Hong Zhang

Vanadium-Chromium composite layer is formed on the surface of cast steel by the method of V-EPC cast penetration. The dry sliding friction wear properties of composite layer are studied on MM200 friction wear testing machine in this paper. The wear surface feature of samples is also observed by SEM and the wear mechanism of samples is analyzed. The result has shown that comparing with the matrix, the wear resistance of composite layer is advanced evidently. The wear rate of composite layer is only eighth to matrix. With the increase of load and the decrease of Vanadium iron in penetrating regent, the wear rate of composite layer increase. The mechanism of composite layer is mainly oxidation and fatigue flake produced by the initiation and expansion of crack.


2020 ◽  
Vol 37 ◽  
pp. 37-45
Author(s):  
Eshan S. Agrawal ◽  
Vinod B. Tungikar

TiC particles are reinforced with Al 7075 to develop metal matrix composite. Special purpose die is fabricated for centrifugal casting machine for the preparation of composite material. The tribological properties such as wear rate and coefficient of friction are determined by using pin on disc wear testing machine. Weight percentage of TiC, applied load, sliding distance are considered as parameters for the wear test. The results show that the wear resistance of the developed composite increases with increase of TiC percentage. Wear rate of Al-TiC composite is observed to be reduced by 11%, 31% and 42% with increasing percentage of TiC by 2.5%, 5% and 7.5% respectively. SEM and EDS analysis are used for morphological study of the worn surfaces of composite. Keywords: Composites, Al-TiC, Wear, Coefficient of Friction (CoF), SEM


Sign in / Sign up

Export Citation Format

Share Document