Application of the K-Means Immune Particle Swarm Optimization Algorithm in the Steam Generator Water Level Control

2014 ◽  
Vol 981 ◽  
pp. 534-537
Author(s):  
Gui Min Sheng ◽  
Yu Cui Xue ◽  
Bo Yang Zhang

The Stability of SG water level plays an important role in the safety of nuclear power plants, but tuned the parameter of water level PID controller is hard. Proposed a novel algorithm, KIPSO, which tuning PID controller parameters. Determine the cluster centre through K-means value cluster algorithm, and take the cluster territory as the characteristic value of vaccine set, enhance the vaccine multiplicity. Updated vaccine extraction by self-adaptive method, improved the convergence and adaptability. Analyzed the algorithm robustness in detail, and gave the rule which the immunity selection parameter. The simulation results shows: compares with the PID controller whose parameters are tuned by ZN method, KIPSO have a smaller overshoot, a better stability, and a shorter adjustment time. The simulation results show that the proposed method is effective for tuning PID parameters.

Author(s):  
Turker Tekin Erguzel

Water level control is a crucial step for steam generators (SG) which are widely used to control the temperature of nuclear power plants. The control process is therefore a challenging task to improve the performance of water level control system. The performance assessment is another consideration to underline. In this paper, in order to get better control of water level, the nonlinear process was first expressed in terms of a transfer function (TF), a proportional-integral-derivative (PID) controller was then attached to the model. The parameters of the PID controller was finally optimized using particle swarm optimization (PSO). Simulation results indicate that the proposed approach can make an effective tracking of a given level set or reference trajectory.


2011 ◽  
Vol 383-390 ◽  
pp. 743-749
Author(s):  
Jiu Qing Liu ◽  
Wei Wang

Based on the fusion of immune feedback mechanism for the conventional PID control technique, a new immune nonlinear PID controller is proposed in this paper. The stability of immune nonlinear PID is analysised using Popov stability criterion. The controller designed not only guarantees the stability robustness and performance robustness of the system but also the tracking performance of the system. The numerical simulation results of the Material-level control of the heat milling system show the effectiveness and feasibility of our immune unlinear PID are verified in Mat lab.


Author(s):  
Vahid Bahrami ◽  
Ahmad Kalhor ◽  
Mehdi Tale Masouleh

This study intends to investigate a dynamic modeling and design of controller for a planar serial chain, performing 2-DoF, in interaction with a cable-driven robot. The under study system can be used as a rehabilitation setup which is helpful for those with arm disability. The latter goal can be achieved by applying the positive tensions of the cable-driven robot which are designed based on feedback linearization approach. To this end, the system dynamics formulation is developed using Lagrange approach and then the so-called Wrench-Closure Workspace (WCW) analysis is performed. Moreover, in the feedback linearization approach, the PD and PID controllers are used as auxiliary controllers input and the stability of the system is guaranteed as a whole. From the simulation results it follows that, in the presence of bounded disturbance based on Roots Mean Square Error (RMSE) criteria, the PID controller has better performance and tracking error of the 2-DoF robot joints are improved 15.29% and 24.32%, respectively.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012030
Author(s):  
Jing Li ◽  
Yanyang Liu ◽  
Xianguo Qing ◽  
Kai Xiao ◽  
Ying Zhang ◽  
...  

Abstract The nuclear reactor control system plays a crucial role in the operation of nuclear power plants. The coordinated control of power control and steam generator level control has become one of the most important control problems in these systems. In this paper, we propose a mathematical model of the coordinated control system, and then transform it into a reinforcement learning model and develop a deep reinforcement learning control algorithm so-called DDPG algorithm to solve the problem. Through simulation experiments, our proposed algorithm has shown an extremely remarkable control performance.


2021 ◽  
Author(s):  
Yonglu Du ◽  
Haotian Li ◽  
Minrui Fei ◽  
Ling Wang ◽  
Pinggai Zhang ◽  
...  

2013 ◽  
Vol 291-294 ◽  
pp. 2397-2402 ◽  
Author(s):  
Yan Fen Liao ◽  
Shao De Guo ◽  
Guang Yang ◽  
Xiao Qian Ma

Deaerator system was one of major components in nuclear power station, and the deaerator water level control was important for safe and stable operation of the nuclear power station. The deaeration system was difficult multi variables process system, which was strong coupling between water-level and pressure. In this paper, a self-tuning fuzzy PID controller was designed based on PID control and fuzzy control theory, which instead of PID controller to control deaerator water-level. Simulation based on Simulink, simulation results showed that the overshoot was 40% by using traditional PID controller, while the overshoot was 12% by using self-tuning fuzzy PID controller. On the other hand, a fuzzy decoupling control scheme was designed to solve the problem of strong coupling between water-level and pressure. Simulation based on Simulink, simulation results showed that the adaptive fuzzy PID decoupling control could get quicker response, overshoot and regulation time was shorter.


2013 ◽  
Vol 651 ◽  
pp. 120-125 ◽  
Author(s):  
Lenka Bodnárová ◽  
Jiri Zach ◽  
Jitka Hroudová ◽  
Jaroslav Válek

The resistance of concrete constructions to high temperatures at present is a much monitored issue for many scientific teams and experts in the stated area. This fact is mainly caused by fatal consequences originating in the case when concrete constructions are loaded by the effect of fire and consequent loss of their load-bearing capacity, for the population and the environment of our planet, in which we live in. The development of society goes hand in hand with the development of new building materials and as a consequence the requirements for building constructions increase which bring about extraordinary strict regulations in the area of fire safety. So, many high, non-traditional or specific constructions originate, e.g. nuclear power plants due to permanently higher demand for transport linkage and many tunnels have originated between European countries as a result. Unfortunately, in this relation the threat of terrorist attacks increases and unexpected natural disasters which also threaten the stability of the mentioned constructions. The objective of the article is to familiarize readers with the results of research concerning the improvement of the resistance of the concrete to high temperatures originated during fire instances.


Sign in / Sign up

Export Citation Format

Share Document