Dynamic modeling and design of controller for the 2-DoF serial chain actuated by a cable-driven robot based on feedback linearization

Author(s):  
Vahid Bahrami ◽  
Ahmad Kalhor ◽  
Mehdi Tale Masouleh

This study intends to investigate a dynamic modeling and design of controller for a planar serial chain, performing 2-DoF, in interaction with a cable-driven robot. The under study system can be used as a rehabilitation setup which is helpful for those with arm disability. The latter goal can be achieved by applying the positive tensions of the cable-driven robot which are designed based on feedback linearization approach. To this end, the system dynamics formulation is developed using Lagrange approach and then the so-called Wrench-Closure Workspace (WCW) analysis is performed. Moreover, in the feedback linearization approach, the PD and PID controllers are used as auxiliary controllers input and the stability of the system is guaranteed as a whole. From the simulation results it follows that, in the presence of bounded disturbance based on Roots Mean Square Error (RMSE) criteria, the PID controller has better performance and tracking error of the 2-DoF robot joints are improved 15.29% and 24.32%, respectively.

The classical proportional integral derivative (PID) controllers are still use in various applications in industry. Magnetic levitation (ML) systems are rigidly nonlinear and sometimes unstable systems. Due to inbuilt nonlinearities of ML systems, tracking of position of ML Systems is still difficult. For the tracking purpose of position, PID controller parameters are found by choosing Cuckoo Search Algorithm (CSA) of optimization. The ranges of parameters are customized by z-n method of parameters. Simulation results show the tracking of position of ML systems using conventional and optimized parameters obtained with the CSA based controller.


2014 ◽  
Vol 953-954 ◽  
pp. 353-356 ◽  
Author(s):  
Fan Yang ◽  
Tong Yang ◽  
Xiao Hong Yang

Aimed at the high inertia and non-linear characteristics of yaw system, a parameter self –tuning fuzzy PID controller is designed. The controller can adjust the PID parameters based on the wind direction variation, and make the turbines track the coming wind timely to obtain maximum power output. Simulation results show that the controller has good real-time performance and robustness compared with the traditional PID control. It can lower the fluctuation and overshoot, and improve the stability of the yaw system significantly.


2020 ◽  
Vol 26 (7) ◽  
pp. 62-82
Author(s):  
Luay Thamir Rasheed

The aim of this paper is to design a PID controller based on an on-line tuning bat optimization algorithm for the step-down DC/DC buck converter system which is used in the battery operation of the mobile applications. In this paper, the bat optimization algorithm has been utilized to obtain the optimal parameters of the PID controller as a simple and fast on-line tuning technique to get the best control action for the system. The simulation results using (Matlab Package) show the robustness and the effectiveness of the proposed control system in terms of obtaining a suitable voltage control action as a smooth and unsaturated state of the buck converter input voltage of ( ) volt that will stabilize the buck converter system performance. The simulation results show also that the proposed control system when compared with the other controllers results has the capability of minimizing the rising time to (  sec) and the settling time to (  sec) in the transient response and minimizing the voltage tracking error of the system output to ( ) volt at the steady state response. Furthermore, the number of fitness evaluations is decreased.


Author(s):  
Mohamed M. Ismail ◽  
Ahmed F. Elbendary ◽  
Abdelghany M. Abdelghany

This paper presents a developed application for using Fraction Order PID controller (FOPID) in controlling of DC motors installed incelestron telescope, this is done through controlling the angles of two DC motors driven the telescope. The model of celestron telescope is mathematically represented by highly non linear differential equations, this types of nonlinear model is recommended to be controlled using Artificial Intelligent based controller. In this paper, optimal fuzzy FOPID is implemented instead of conventional PID controllers. Genetic Algorithm, fuzzy logic are used for  tuning the FOPID parameters.FOPID  controller is based on  position error and its rate of change as an input vector, the proposed controller set presents a complete precision in forcing the telescope motors to satisfy the predefined position. The simulation results show the dynamic response of the system and the enhancement achieved in rising time and settling time when using FOPID. The response of FOPID is compared with the conventional PID with the same input position reference.


2013 ◽  
Vol 25 (1) ◽  
pp. 192-200 ◽  
Author(s):  
Dengfeng Li ◽  
◽  
Hector Martin Gutierrez

A novel 1-DOF hybrid magnetic suspension actuator for precise motion control is presented. The actuator is designed to achieve sub-micron positioning accuracy over a range of motion in excess of 1000 µm while avoiding large nominal levitation currents and iron core saturation. The proposed passive push-active pull configuration offers precise motion control with moderate actuator effort when a payload is to be accurately suspended over a large range of travel. The proposed actuator can be used modularly to control multiple axes of motion in a multi-DOF positioning application that requires millimeter-range travel with submicron accuracy. A Quasi-Sliding Mode controller (QSM) is presented in which the sliding mode dynamics are directly designed, as opposed to the typical Lyapunov function approach that is solely based on stability. Since full knowledge of the state vector is required, a nonlinear high-gain observer was also designed and implemented. Performance of the QSM algorithm in controlling the proposed actuator is compared to that of a PID controller with standard feedback linearization. Several experiments are conducted to demonstrate both the positioning and tracking capabilities of the proposed actuator. The proposed QSM method shows better transient performance than the standard PID feedback linearization approach. QSM also shows better tracking performance, which is highly desirable in systems in which fast and accurate motion control along a desired path is critical.


2013 ◽  
Vol 853 ◽  
pp. 428-434 ◽  
Author(s):  
Xue Qin Zheng

Thanks to the development of microprocessors, hybrid stepping motors have been widely used in many areas where they perform positioning operations. However, the stepping motor suffers from system variations, low performance and lack of adaptability to load variations, which slow down their responding speed of high-precision positioning operations. In this paper, a computational verb PID controller is proposed to control the position of a stepping motor drive. The simulation results show that the computational verb PID controller has better performances than conventional and fuzzy PID controllers. The simulation results also show that the responding speed and positioning accuracy of the controlled hybrid stepping motor were greatly improved. Computational verb PID controller has much less computational complexity than fuzzy PID controller.


Author(s):  
Meiyin Zhu ◽  
Xi Wang

Flight Environment Simulation Volume (FESV) is the most important part of Altitude Ground Test Facilities (AGTF). It’s temperature and pressure control precision determines the level of test ability of AGTF. Therefore, in order to study the temperature and pressure control problem of FESV and improve the modeling precision of FESV, the energy equation and gas state equation are used to deduce the temperature and pressure differential equations of FESV. Meanwhile, the heat transfer influence of FESV has been taken into account in this paper and the transient heat conduction of FESV is established by using a discretizing method. The temperature and pressure differential equations of FESV are linearized around a balance point and the uncertainty of actuators has been considered in multiplicative uncertainty. The augmented system of linear model of FESV and the actuators are obtained. For the sake of making the controller design and weighting function choice more easily, a normalization method is used to normalize the augmented system. For the purpose of achieving the temperature and pressure synchronic control of FESV, a two-degree-of-freedom integral type μ synthesis control design method is proposed. What’s more, for guaranteeing the designed μ synthesis controller has servo tracking and disturbance attenuation performance, the performance weighting functions are designed according to the frequency division weighting principle and the control weighting functions are designed by using the principle of low frequency free limit, medium frequency gradually increase the limit, and high frequency maximum limit. The MATLAB Robust Control Toolbox function dksyn is used to design the μ controller. In order to verify the effectiveness of designed μ controller, we assume two types of engine test conditions. The simulation results show, for the engine test condition one, the biggest relative tracking error of temperature is less than 0.5% and the relative steady state error of pressure is less than 0.1% and the relative tracking error of pressure slope signal is less than 3%. For the engine test condition two, the relative steady state error of temperature is less than 0.1% and the relative tracking error of temperature slope signal is less than 1%. To verify the advantage of designed μ controller, we designed a PID controller and compared the simulation results with μ controller. The comparison results showed that the designed μ controller provided better performance than the PID controller.


2012 ◽  
Vol 461 ◽  
pp. 109-112
Author(s):  
Du Kun Ding ◽  
Long Gen Li ◽  
Cun Xi Xie ◽  
Tie Zhang

In this paper, a DNA-PID controller is proposed for a 6-DOF robot. The experimental robot system has firstly been setup. Then the PID controllers of the robot joints are designed. Due to DNA algorithm’s excellent computing characteristics, it is researched and used to set the PID parameters on line, which are the proportional coefficient, the integral coefficient and the differential coefficient. To test the controllers, several experiments are performed. The computer simulation results show that the DNA-PID controllers have faster respond speed and less overshot, which can meet the need of robot control


2011 ◽  
Vol 383-390 ◽  
pp. 743-749
Author(s):  
Jiu Qing Liu ◽  
Wei Wang

Based on the fusion of immune feedback mechanism for the conventional PID control technique, a new immune nonlinear PID controller is proposed in this paper. The stability of immune nonlinear PID is analysised using Popov stability criterion. The controller designed not only guarantees the stability robustness and performance robustness of the system but also the tracking performance of the system. The numerical simulation results of the Material-level control of the heat milling system show the effectiveness and feasibility of our immune unlinear PID are verified in Mat lab.


Robotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 95
Author(s):  
Rezvan Nasiri ◽  
Mohammad Shushtari ◽  
Arash Arami

In this paper, we present a novel adaptation rule to optimize the exoskeleton assistance in rehabilitation tasks. The proposed method adapts the exoskeleton contribution to user impairment severity without any prior knowledge about the user motor capacity. The proposed controller is a combination of an adaptive feedforward controller and a low gain adaptive PD controller. The PD controller guarantees the stability of the human-exoskeleton system during feedforward torque adaptation by utilizing only the human-exoskeleton joint positions as the sensory feedback for assistive torque optimization. In addition to providing a convergence proof, in order to study the performance of our method we applied it to a simplified 2-DOF model of human-arm and a generic 9-DOF model of lower limb to perform walking. In each simulated task, we implemented the impaired human torque to be insufficient for the task completion. Moreover, the scenarios that violate our convergence proof assumptions are considered. The simulation results show a converging behavior for the proposed controller; the maximum convergence time of 20 s is observed. In addition, a stable control performance that optimally supplements the remaining user motor contribution is observed; the joint angle tracking error in steady condition and its improvement compared to the start of adaptation are as follows: shoulder 0.96±2.53° (76%); elbow −0.35±0.81° (33%); hip 0.10±0.86° (38%); knee −0.19±0.67° (25%); and ankle −0.05±0.20° (60%). The presented simulation results verify the robustness of proposed adaptive method in cases that differ from our mathematical assumptions and indicate its potentials to be used in practice.


Sign in / Sign up

Export Citation Format

Share Document