Operational Capability of Ship-to-Air Missile Weapon System

2014 ◽  
Vol 981 ◽  
pp. 713-716
Author(s):  
Yong Hong Lu ◽  
Ji Hua Dou ◽  
Xing Bao Yang ◽  
Chuan Wei Zhu

As operational capability of the weapon system can be varied with each fire, it proposes operational capability evaluation method for the weapon system, afterwards it proposes operational capability evaluation method for the weapon fire taking the impact indicators such as single target detection probability of shipborne early-warning radar into account.

2012 ◽  
Vol 12 (1) ◽  
pp. 446-450
Author(s):  
Jihua Dou ◽  
Jiaxiang Yu ◽  
Xiaoming Liu ◽  
Ying Li

2012 ◽  
Vol 241-244 ◽  
pp. 379-383
Author(s):  
Hong Qiang Gu ◽  
Cheng Zhang ◽  
Quan Shi

Equipment maintenance support capability is an important part of operational capability and the evaluation of equipment maintenance support capability is very important to the establishment of battle effectiveness. Cloud theory is applied to equipment maintenance support capability evaluation on basis of the establishment of the evaluation index system of equipment support capability. The application steps of cloud barycenter evaluation method to equipment maintenance support capability evaluation are analyzed. The evaluation result is achieved using weighted deflection degree which is used to demonstrate the deflection degree between equipment maintenance support capability and its perfect state. The correctness and validity of the proposed method is verified by the calculating result, which provide an efficient method for equipment maintenance support capability evaluation.


2020 ◽  
Author(s):  
Dayong Li

<p>In this paper, a comprehensive early-warning method of sudden water pollution is used to systematically evaluate the hazards of sensitive receptors after accidents. A coupling model of the river network hydrodynamic and water quality for conventional pollutants and conservative substance is developed to track and predict the behavior and fate of the accidental pollution mass, the expert questionnaires and other means are used to construct a quantitative and qualitative early warning index system to describe the accidental hazard, the AHP and fuzzy comprehensive evaluation method are used to quantitatively evaluate the consequences of accidental hazards and a sudden water pollution risk early warning method based on the process of "accident occurrence-pollution prediction-consequence evaluation" is finally formed. The method is applied to the Yincungang River in the Yixing River Network, and the response of sensitive receptors to the discharge status of risk sources under different water regime is analyzed. The results show that: (a) the duration of the impact from the accident, the maximum standard-exceeding multiple of water quality and the degradation degree of water quality in the sensitive receptors are positively related to the discharge intensity or discharge time of the accident source, but the response time from the accidental impact is negatively related to them. (b) during the non-flood season, the warning situation in the Yincungang River shows a gradual decrease from upstream to downstream; during the main flood season, the warning situation in the upper and middle reaches of Yincungang River shows a decreasing trend, but in the middle and lower reaches that increases.(c) the transport distance and speed of accidental pollutants in the river and the concentration of accidental pollutants in the background at the sensitive receptors determine the quantitative early warning indexes dynamically, which is the fundamental reason for the spatial change of warning situation in different water regime.</p>


2020 ◽  
pp. 1-11
Author(s):  
Qiaoying Ding

The financial market is changing rapidly. Since joining the WTO, our country’s financial companies have faced pressure from dual competition at domestic and abroad. The complex internal and external environment has forced financial enterprise managers to improve risk prevention awareness, early warning and monitoring, so as to responding to emergencies and challenges in the financial market. However, traditional forecasting and analysis methods have problems such as large workload, low efficiency, and low accuracy. Therefore, this article applies intelligent computing to the forecast of financial markets, using related concepts of fuzzy theory and Internet intelligent technology, and proposes to establish a model system for financial enterprise risk early warning management and intelligent real-time monitoring based on fuzzy theory. This article first collected a large amount of data through the literature investigation method, and made a systematic and complete introduction to the related theoretical concepts of fuzzy theory and financial risk early-warning management, has laid a sufficient theoretical foundation for the subsequent exploration of the application of fuzzy theory in financial enterprise risk early warning management and intelligent real-time systems; Then a fuzzy comprehensive evaluation method that combines the analytic hierarchy process and fuzzy evaluation method is proposed, taking a listed company mainly engaged in automobile sales in our province as a case, the company’s financial risk management and modeling experiment of the intelligent real-time system; Finally quoted specific cases again, used the fuzzy comprehensive evaluation method to carry out risk warning and evaluation on the PPP projects of private enterprises in our province, and concluded that the project risk score is between 20-60, which is meet the severe-medium range in the risk level. Research shows that the use of fuzzy theory and modern network technology can make more accurate warnings and assessments of potential and apparent risks of financial enterprises, greatly improving the safety of financial enterprise management and reducing the losses caused by various risks.


2021 ◽  
Vol 13 (4) ◽  
pp. 594
Author(s):  
Rui Wang ◽  
Yiming Zhang ◽  
Weiming Tian ◽  
Jiong Cai ◽  
Cheng Hu ◽  
...  

Entomological radars are important for scientific research of insect migration and early warning of migratory pests. However, insects are hard to detect because of their tiny size and highly maneuvering trajectory. Generalized Radon–Fourier transform (GRFT) has been proposed for effective weak maneuvering target detection by long-time coherent detection via jointly motion parameter search, but the heavy computational burden makes it impractical in real signal processing. Particle swarm optimization (PSO) has been used to achieve GRFT detection by fast heuristic parameter search, but it suffers from obvious detection probability loss and is only suitable for single target detection. In this paper, we convert the realization of GRFT into a multimodal optimization problem for insect multi-target detection. A novel niching method without radius parameter is proposed to detect unevenly distributed insect targets. Species reset and boundary constraint strategy are used to improve the detection performance. Simulation analyses of detection performance and computational cost are given to prove the effectiveness of the proposed method. Furthermore, real observation data acquired from a Ku-band entomological radar is used to test this method. The results show that it has better performance on detected target amount and track continuity in insect multi-target detection.


Author(s):  
Zifeng Liang

Facing climate risks has become a common problem for mankind and a topic of great importance for the Chinese government. To thoroughly implement the overall requirements for the construction of an ecological civilization and effectively improve the capacity of cities to adapt to climate change, China launched the pilot construction of “Climate Resilient Cities” in 2017. In this paper, 16 prefecture level cities in Anhui Province of China were selected as the research objects, and the multi-level grey system evaluation method was used to measure the climate resilience of these regions. We used the difference in differences method to evaluate the effect of the pilot policy of “Climate Resilient Cities.” The pilot policies of the “Climate Resilient Cities” showed a significant contribution to the regional climate resilience, and, after isolating the impact of other factors on the regional climate resilience, the pilot policies of the “Climate Resilient Cities” increased the climate resilience of the pilot cities by four percentage points. The pilot policies of the “Climate Resilient Cities” had a significant contribution to the urban infrastructure development and ecological space optimization, as well as non-significant impacts to the urban water security, emergency management capacity-building, and science and technology innovation initiatives.


Sign in / Sign up

Export Citation Format

Share Document