Mechanical Design to Adapt Changes to Existing Universal Test Bed Facility of Turbojet Engine for the Turbofan Engine

2014 ◽  
Vol 983 ◽  
pp. 374-378
Author(s):  
Fawwad Ahmed ◽  
Ahmad Aizaz ◽  
Zahid Mahmood

The existing Universal Test Bed (UTB) is a facility to ground test Turbojet Engines before installation on the aircraft. This work provides a feasibility study to adapt changes to this UTB for the Turbofan Engine. Necessary design modification of existing UTB is performed by applying propulsive and structural analysis for the adaptation of Turbofan engine. Physical measurements of the UTB and the mounts of Turbofan Engine reveal their mutual compatibility. Based on these measurements, six different CAD models are generated in Solid Works® and analyzed in ANSYS® Workbench. After grid independence check, validation of the model with applied loads and the boundary conditions was done through comparison of analytical calculations with those of a simplified CAD model. Based on minimum stress vis-à-vis maximum Factor of Safety (FOS), the best design is finally selected through this research.

2003 ◽  
Vol 16 (3) ◽  
pp. 138-141
Author(s):  
Wen-feng LI ◽  
Yong-sheng WANG
Keyword(s):  
Test Bed ◽  

2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881064 ◽  
Author(s):  
Yili Zheng ◽  
Guannan Lei ◽  
Mingwei Zhang ◽  
Qianbo Che

Space grippers are the key devices for accomplishing space non-cooperative target capture, which has a great significance for satellite services and space debris removal. This article proposes a novel mechanical gripper device for the capture of aluminum honeycomb panels of non-cooperative satellites. The gripper was modeled and assembled in the three-dimensional modeling platform UGNX. The model was imported into the simulation software ADAMS. ADAMS is capable of analyzing the kinematic feasibility of the gripper model. Collision and penetrating power analysis of the mechanical claws into an aluminum honeycomb plate were carried out in LS-DYNA. Through non-vertical piercing experiment, the maximum approaching angle tolerance is 10°. The established rigid connection can withstand a destructive force greater than 1000 N. A prototype of the mechanical gripper is built. A ground test was carried out with this prototype, in which a test-platform simulated the space microgravity environment. The results certified that the prototype could reach the target at a relative speed of 0.5 m/s and then quickly complete the grabbing motion and establish a rigid connection. The experiment shows that this mechanical gripper can accomplish the task of repeatedly capturing the surface of non-cooperative space satellites.


Author(s):  
ELIEL EDUARDO MONTIJO-VALENZUELA ◽  
SAUL DANIEL DURAN-JIMENEZ ◽  
LUIS ALBERTO ALTAMIRANO-RÍOS ◽  
JOSÉ ISAEL PÉREZ-GÓMEZ ◽  
OSCAR SALMÓN-AROCHI

The objective of this research is to manufacture a prototype of a teaching die for the specialty of precision mechanical design in mechatronic engineering, in order to achieve the skills required in unit two, regarding dies. The methodology used consists of five stages: 1. Definition of the preliminary conditions. 2. Theoretical calculations for die design. 3. Design, modeling and assembly using computer-aided software (CAD) of the parts that make up the die. 4. Validation with simulation of finite element analysis (AEF). 5. Manufacture of parts and physical assembly of the die. A functional prototype was obtained with which the teacher and student can perform calculations, designs and CAD models, AEF analysis of the static and fatigue type, manufacture of rapid prototypes using 3D printing, the identification of the parts that make up a die and their functioning. The advantage of this prototype, compared to metal die-cutting machines, is its low cost of production and manufacturing, it does not require expensive and specialized machinery for manufacturing, specific designs can be made by the students and its subsequent manufacture within the laboratories of the Technological Institute of Hermosillo.


Author(s):  
Jean-Christophe Cuillière ◽  
Vincent François ◽  
Khaled Souaissa ◽  
Abdelmajid Benamara ◽  
Hedi BelHadjSalah

Author(s):  
Dustin J. Frohnapfel ◽  
K. Todd Lowe ◽  
Walter F. O’Brien

Abstract Over the last decade, the Turbomachinery and Propulsion Research Laboratory at Virginia Tech has researched, invented, developed, computationally analyzed, experimentally tested, and improved turbofan engine inlet distortion generators. This effort began with modernizing and improving inlet total pressure distortion screens originally conceived over half a century ago; continued with the invention of inlet swirl distortion generators (StreamVanes™) made possible only through advances in modern additive manufacturing technology; and has, thus far, culminated in a novel combined device (ScreenVanes™) capable of simulating realistic flight conditions of coupled inlet total pressure and swirl distortion in a ground-test turbofan engine research platform. The present research focuses on the methodology development, computational analysis, and experimental validation of a novel simultaneous inlet total pressure and swirl distortion generator. A case study involving a single bend S-duct inlet distortion profile demonstrates the ability to generate a high-fidelity profile simulation, yet outlines a design process sufficiently generic for application to any arbitrary inlet geometry or distortion profile. A computational fluid dynamics simulation of the S-duct inlet provided the target profile extracted at the aerodynamic interface plane. Next, utilizing a method of inverse propagation, the planar distortion profile was propagated upstream to yield a flow field that could be manufactured by a distortion generator adequately isolated from turbomachinery effects. The total pressure distortion screen and swirl distortion StreamVane components were then designed and computationally analyzed. Upon successful computational reproduction of the S-duct inlet distortion profile, experimental hardware was fabricated and tested to validate the ScreenVane methodology and distortion generating device. Comparison of the S-duct manufactured distortion and the ScreenVane manufactured distortion was used as the primary criterion for profile replication success. Results from a computational analysis of both the S-duct and ScreenVane indicated excellent agreement in distortion pattern shape, extent, and intensity with full-field total pressure recovery and swirl angle profiles matching within approximately 0.80% and 2.6°, respectively. Furthermore, experimental validation of the ScreenVane indicated nearly identical full-field total pressure recovery and swirl angle profile replication of approximately 1.10% and 2.6°, respectively, when compared to the computational results. The investigation concluded that not only was the ScreenVane device capable of accurately simulating a complex inlet distortion profile, but also produced a viable device for full-scale turbofan engine ground test.


1973 ◽  
Vol 95 (4) ◽  
pp. 1039-1047 ◽  
Author(s):  
H. Fine ◽  
J. Quadrini ◽  
S. Ollendorf

The Orbiting Astronomical Observatory (OAO)-C was successfully launched into 400-nautical mile circular orbit on August 21, 1972. For this spacecraft, a unique sensitivity approach to the thermal design was developed which resulted in a predictal design—the merits of which should be considered for application on future spacecra. The OAO-C is also serving as a test bed for the evaluation of thermal control hardware. To provide flight data for space program applications, experiments for a new coating and four different heat pipe designs are on this spacecraft. The data derived from OAO-C will be extremely valuable for such future programs as the Large Space Telescope (LST) and the Earth Observation Satellite (EOS). This paper will describe the detailed of the sensitivity design approach and thermal control hardware. For all aspects discussed, a comparison of pertinent analysis, ground test data, and flight data [1] will be given.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Min Li ◽  
Y. F. Zhang ◽  
J. Y. H. Fuh ◽  
Z. M. Qiu

In product design, a large proportion of three-dimensional (3D) computer-aided design (CAD) models can be reused to facilitate future product development due to their similarities in function and shape. This paper presents a novel method that incorporates modeling knowledge into CAD model similarity assessment to improve the effectiveness of reuse-oriented retrieval. First, knowledge extraction is performed on archived feature-based CAD models to construct feature dependency directed acyclic graph (FDAG). Second, based on the FDAG subgraph decomposition, two useful component partitioning approaches are developed to extract simplified essential shapes and meaningful subparts from CAD models. Third, the extracted shapes and their FDAG subgraphs are indexed. Finally, the indexed shapes that are similar to user-sketched queries are retrieved to reuse, and FDAG information of the retrieved shapes is provided as redesign suggestions. Experimental results suggest that the incorporation of modeling knowledge greatly facilitates CAD model retrieval and reuse. Algorithm evaluations also show the presented method outperforms other 3D retrieval methods.


Author(s):  
Amar Singh ◽  
Joseph Shibu Kalloor

An aero-engine heat shield made up of corrosion resistance steel sheet and mounted between the nozzle box and the exhaust unit of a gas turbine engine was frequently getting rejected due to crack initiation at the periphery of the apertures. Also higher amplitude of vibration was observed in heat shield during operation of the engine. A detailed structural and vibration analysis of the heat shield was carried out to find out the reasons for this pre-matured failure. Based on the results of the analysis, the heat shield was modified, by introducing flat stiffeners, welded around the apertures to evade crack initiation. This modification increased fatigue life and reduced vibration level of the heat shield. The heat shield is successfully subjected to airworthiness qualification test in the aero-engine test bed and subsequently type certified for use in engine.


Sign in / Sign up

Export Citation Format

Share Document