scholarly journals MANUFACTURE OF A DIE PROTOTYPE FOR DIDACTIC PURPOSES IN MECHATRONIC ENGINEERING

Author(s):  
ELIEL EDUARDO MONTIJO-VALENZUELA ◽  
SAUL DANIEL DURAN-JIMENEZ ◽  
LUIS ALBERTO ALTAMIRANO-RÍOS ◽  
JOSÉ ISAEL PÉREZ-GÓMEZ ◽  
OSCAR SALMÓN-AROCHI

The objective of this research is to manufacture a prototype of a teaching die for the specialty of precision mechanical design in mechatronic engineering, in order to achieve the skills required in unit two, regarding dies. The methodology used consists of five stages: 1. Definition of the preliminary conditions. 2. Theoretical calculations for die design. 3. Design, modeling and assembly using computer-aided software (CAD) of the parts that make up the die. 4. Validation with simulation of finite element analysis (AEF). 5. Manufacture of parts and physical assembly of the die. A functional prototype was obtained with which the teacher and student can perform calculations, designs and CAD models, AEF analysis of the static and fatigue type, manufacture of rapid prototypes using 3D printing, the identification of the parts that make up a die and their functioning. The advantage of this prototype, compared to metal die-cutting machines, is its low cost of production and manufacturing, it does not require expensive and specialized machinery for manufacturing, specific designs can be made by the students and its subsequent manufacture within the laboratories of the Technological Institute of Hermosillo.

Author(s):  
Margherita Peruzzini ◽  
Maura Mengoni ◽  
Michele Germani

The promise of Virtual Reality in design environments is to facilitate the interaction with digital models and to enhance the results of design activity. Design education is one of the most recent and interesting applications. Thanks to technological advances in human-computer interfaces, Virtual Reality represents a new way to stimulate design students and to develop innovative teaching methods. The paper explores the impact of Virtual Reality technologies on design learning, with particular attention to mechanical product design. It is focused on the analysis of cognitive and technical aspects of learning processes and the definition of a proper evaluation protocol. The protocol is based on the classification of the most meaningful activities in mechanical engineering teaching and the identification of a set of metrics that enable to objectively evaluate the learning process. Assessing how VR supports design education, an experimental study is proposed. It is based on the comparison of three different approaches performed by two-dimensional drawings, by 3D CAD models and, finally, by virtual reality technologies.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 850
Author(s):  
Leonardo Frizziero ◽  
Curzio Pagliari ◽  
Giampiero Donnici ◽  
Alfredo Liverani ◽  
Gian Maria Santi ◽  
...  

This experimental study defines the usage of a computer-aided surgical simulation process that is effective, safe, user-friendly, and low-cost, that achieves a detailed and realistic representation of the anatomical region of interest. The chosen tools for this purpose are state-of-the-art Computer Aided Design (CAD) software for mechanical design, and are the fundamental application dedicated to parametric modeling. These tools support different work environments, each one is for a specific type of modeling, and they allow the simulation of surgery. The result will be a faithful representation of the anatomical part both before and after the surgical procedure, screening all the intermediate phases. The doctor will assess different lines of action according to the results, then he will communicate them to the engineer who, consequently, will correct the antisymmetric issue and regenerate the model. Exact measurements of the mutual positions of the various components, skeletal and synthetic, can be achieved; all the osteosynthesis tools, necessary for the surgeon, can be included in the project according to different types of fracture to perfectly match the morphology of the bone to be treated. The method has been tested on seven clinical cases of different complexity and nature and the results of the simulations have been found to be of great effectiveness in the phase of diagnosis and of preoperative planning for the doctors and surgeons; therefore, allowing a lower risk medical operation with a better outcome. This work delivers experimental results in line with theoretical research findings in detail; moreover, full experimental and/or methodical details are provided, so that outcomes could be obtained.


Author(s):  
Antoine Van Biesbroeck ◽  
Feifei Shang ◽  
David Bassir

Computer aided design (CAD) models are widely employed in the current computer aided engineering or finite element analysis (FEA) systems that necessitate an optimal meshing as a function of their geometry. To this effect, the sub-mapping method is advantageous, as it segments the CAD model into different sub-parts, with the aim mesh them independently. Many of the existing 3D shape segmentation methods in literature are not suited to CAD models. Therefore, we propose a novel approach for the segmentation of CAD models by harnessing deep learning technologies. First, we refined the model and extracted local geometric features from its shape. Subsequently, we devised a convolutional neural network (CNN)-inspired neural network trained with a custom dataset. Experimental results demonstrate the robustness of our approach and its potential to adapt to augmented datasets in future.


2021 ◽  
Vol 2074 (1) ◽  
pp. 012013
Author(s):  
Jiren Gu ◽  
Longbo Chen

Abstract There are many kinds of industrial products. Different industrial products play different roles in life. There is no doubt that they are indispensable in our life. We found that most of the production of industrial products rely on the mold industry[1]. Mold industry is also the foundation of mechanical design industry. However, the traditional mold design concept is very old. Moreover, the disadvantages of traditional mold design are also many. Based on this, the experts put forward the mechanical mold design supported by computer-aided technology. This paper presents the main application of computer aided technology in die design.


Author(s):  
R. Lou ◽  
F. Giannini ◽  
J-P. Pernot ◽  
A. Mikchevitch ◽  
B. Falcidieno ◽  
...  

Nowadays, most of the numerical simulations are carried out by successively performing the following steps: CAD model definition or modification, conversion to a mesh model and enrichment with semantic data relative to the simulation (e.g. material behaviour laws, boundary conditions), Finite Element simulation and analysis of the results. Classically, the semantic data are attached to the mesh through the use of groups of geometric entities sharing the same characteristics. Thus, any modification of the CAD model always implies an update of the mesh as well as an update of the attached semantic data. This is time-consuming and not adapted to the context of industrial maintenance. Moreover, the CAD models do not always exist and should therefore be reconstructed starting from scratch or from the physical object. In this paper, we set up a framework towards the definition of CAD-less Finite Element analyses wherein enriched meshes are manipulated directly. The geometric manipulations are constrained with information extracted from the group definition. Actually, the boundaries of those groups are exploited to constrain the modifications. The concept of Virtual Group Boundaries is introduced to focus on the extension of the attached semantic information instead of the actual tessellation while generalising the approach to groups of any dimension going from 0D (vertex) to 3D (e.g. tetrahedron). The notion of Elementary Group is also introduced as a mean to ease the forthcoming transfer of the semantics from the initial to the modified models. Such a framework also finds interest in the preliminary design phases where alternative solutions have to be evaluated.


Author(s):  
James J.-S. Stone ◽  
Andrew R. Thoreson ◽  
Kurt L. Langner ◽  
Jay M. Norton ◽  
Daniel J. Stone ◽  
...  

A custom computer-controlled rapid prototyping system was designed and developed in this research. This system for bio-manufacturing of polymer scaffolds included 3D motion control components, a nozzle, a pressure controller, and a temperature-controlled reservoir containing a biomaterial. Heating elements built into the reservoir melted the biomaterial. The pressure line attached to the reservoir provided a controllable force that extruded the polymer biomaterial through the nozzle and deposited the polymer biomaterial onto a platform to fabricate scaffolds. A low pressure (830 KPa) system was designed and fabricated to accommodate different temperatures, motion speeds, and viscosities of polymer biomaterials. The reservoir with the nozzle was mounted to servo motor-controlled linear x-y motion devices along with a third servo motor-controlled device that controlled the z-position of the platform. Poly(ε-caprolactone) [PCL] was used to fabricate scaffolds with designed structure that were used in cell and tissue regeneration studies. 3D computer-aided design (CAD) with Pro-Engineer and computational finite element analysis (FEA) programs with MSC_Patran and MSC_Marc were used to model scaffold designs with appropriate architecture and material selection. The CAD models were used in FEA to develop new methods for determining mechanical properties of tissue scaffolds of desired structure and geometry. FEA models were validated by mechanical testing and other published results. Technology developed in this research has potential for the advancement of bio-manufacturing, and design optimization of scaffolds for tissue engineering.


Author(s):  
R. F. Hamade

Having observed mechanical engineering seniors at the American University of Beirut (AUB) go about learning computer-aided design (CAD) in a formal setting, the instructors always wondered why some students acquire CAD skills with relative ease while some others seem to struggle. For this reason, a methodical study was launched in order to address this issue. Hence, and in order to “study the students as they learn” was accomplished by following 74 mechanical engineering seniors (it took three academic years including AY 2008–09 in order to have access to this relatively large number of trainees) as they went through a semester-long formal training on a commercial computer-aided design (CAD) package (Pro/Engineer, version Wildfire). The study methodically explored the trainees’: (1) technical background, (2) behavioral attributes (willingness-to-learn), and their (3) learning preferences. Investigating the technical background included quantifying the trainees’ relevant technical competencies specifically: basic math foundation, advanced math foundation, CAD-related mathematical foundation, computer science and engineering foundation, methodologies related to CAD, graphics foundation, and mechanical design foundation. Determining the trainees’ behavioral attributes included exploring their initial attitude towards learning of CAD, perception and imagination, and gauging their actual behavior (practice and CAD skills learned) throughout the training. Trainees’ learning styles were determined according to the index of learning styles, ILS [1]. Furthermore, and in order to assess the trainees’ progress in CAD knowledge acquisition, competency tests were conducted at four intervals throughout the semester-long study (2, 4, 7, and 12 weeks). The assessment involved hands-on building of CAD test parts of comparable complexity. At the conclusion of the study, statistical methods were used to correlate the trainees’ attributes with their monitored performance. Only a fraction (17 out of a class of 74 trainees or about one in four) of the trainees were found to fit the “star CAD trainee” mold which was defined in this study as someone who is fast on the tube as well as perceptive enough to be see through the procedure of building progressively more sophisticated CAD models. A profile of this “star CAD trainee” character emerges as an individual who is technically competent and perceptive, with personal drive and positive attitude, and who possesses active, sensor, sequential and visualizing learning styles.


2011 ◽  
Vol 179-180 ◽  
pp. 386-391
Author(s):  
Fu Zhao ◽  
Ping Wang ◽  
Yan Jue Gong ◽  
Li Zhang ◽  
Chun Ling Meng

Uncooled infrared bolometer arrays have become mainstream low-cost thermal detector used in applications such as firefighting, security and surveillance, and environment temperature control for food operation. In order to resolve the pixel structure’s stress problem of microbolometer, this paper adopts finite element analysis method to model and analyze the mechanical properties of pixel structure. Several results of the stress and displacement are presented and the influence of structure optimization on the stress is also analyzed quantitatively. The research provides a good foundation and mechanics reference for mechanical design of uncooled microbolometer.


Author(s):  
Luis Arturo Gómez Malagón ◽  
João Luiz Vilar Dias
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document