Research on a Battery Balancing Method for Lithium-Ion Battery Pack of Electric Vehicle

2014 ◽  
Vol 986-987 ◽  
pp. 1842-1845
Author(s):  
Yi Ning Chen ◽  
Yu Gui ◽  
Hong He

As the key technology of the electric vehicle, more and more research on battery management system has been done. And the balancing technology is the important part of battery management system. In this paper, a multi-inductor balancing method based on the Buck-Boost topological structure is used to improve batteries’ inconsistencies by obtaining parameters of the battery pack in real time. The proposed balancing method can improve batteries’ inconsistencies so as to increase the capacity utilization rate of the battery pack and prolong the battery lifespan. And in this paper a series of bench experiments were done to examine the effectiveness of the balancing method.

2020 ◽  
Author(s):  
Wu-Yang Sean ◽  
Ana Pacheco

Abstract For reusing automotive lithium-ion battery, an in-house battery management system is developed. To overcome the issues of life cycle and capacity of reused battery, an online function of estimating battery’s internal resistance and open-circuit voltage based on adaptive control theory are applied for monitoring life cycle and remained capacity of battery pack simultaneously. Furthermore, ultracapacitor is integrated in management system for sharing peak current to prolong life span of reused battery pack. The discharging ratio of ultracapacitor is adjusted manually under Pulse-Width-Modulation signal in battery management system. In case study in 52V LiMnNiCoO2 platform, results of estimated open-circuit voltage and internal resistances converge into stable values within 600(s). These two parameters provide precise estimation for electrical capacity and life cycle. It also shows constrained voltage drop both in the cases of 25% to 75% of ultracapacitors discharging ratio compared with single battery. Consequently, the Life-cycle detection and extending functions integrated in battery management system as a total solution for reused battery are established and verified.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012017
Author(s):  
Ramu Bhukya ◽  
Praveen Kumar Nalli ◽  
Kalyan Sagar Kadali ◽  
Mahendra Chand Bade

Abstract Now a days, Li-ion batteries are quite possibly the most exceptional battery-powered batteries; these are drawing in much consideration from recent many years. M Whittingham first proposed lithium-ion battery technology in the 1970s, using titanium sulphide for the cathode and lithium metal for the anode. Li-ion batteries are the force to be reckoned with for the advanced electronic upset in this cutting-edge versatile society, solely utilized in cell phones and PC computers. A battery is a Pack of cells organized in an arrangement/equal association so the voltage can be raised to the craving levels. Lithium-ion batteries, which are completely utilised in portable gadgets & electric vehicles, are the driving force behind the digital technological revolution in today’s mobile societies. In order to protect and maintain voltage and current of the battery with in safe limit Battery Management System (BMS) should be used. BMS provides thermal management to the battery, safeguarding it against over and under temperature and also during short circuit conditions. The battery pack is designed with series and parallel connected cells of 3.7v to produce 12v. The charging and releasing levels of the battery pack is indicated by interfacing the Arduino microcontroller. The entire equipment is placed in a fiber glass case (looks like aquarium) in order to protect the battery from external hazards to design an efficient Lithium-ion battery by using Battery Management System (BMS). We give the supply to the battery from solar panel and in the absence of this, from a regular AC supply.


Author(s):  
Soeprapto Soeprapto ◽  
Rini Nur Hasanah ◽  
Taufik Taufik

<span>Electric bike (E-Bike) is a bicycle driven using an electric motor and uses batteries as the energy source. It is environmentally friendly as no exhaust gas is resulted during its operation. More than one battery is normally required, being arranged in series or in parallel connection. Over limit or overloaded conditions of battery usage will reduce the lifecycle of battery, speed up its replacement and add to the maintenance cost of electric bike. This paper proposes the prevention of such degrading condition using a tool to manage the battery usage both during the charging and discharging process. The proposed electronic Battery Management System (BMS) serves to regulate, monitor, and maintain the condition of batteries to prevent any possible damage. The resulted BMS design could provide a well balancing action in a battery system consisting of 13 cells utilizing the cell-to-cell active balancing method. The test results showed that the proposed BMS could monitor the individual cell voltage with an average error of 0.032 V (0.824</span><span lang="IN">%</span><span>), while reading the charge and discharge current with an average error of 0.04 A (</span><span lang="IN">6.25%</span><span>), and the battery pack temperature with an average error of 1.21<sup>o</sup>C (</span><span lang="IN">2.9%</span><span>). Additionally, the BMS could offer a functional battery pack protection system from conditions such as undervoltage, overvoltage, overheat, and overcurrent.</span>


2011 ◽  
Vol 201-203 ◽  
pp. 2427-2430
Author(s):  
Yuan Liao ◽  
Ju Hua Huang ◽  
Qun Zeng

According to the features of lithium ion battery packs, a distributed battery management system (BMS) for battery electric vehicle (BEV) is designed in this article. The BMS consists of a master module with several sampling modules. The kernel of master module is TMS320C2812 digital signal processor, and the kernel of sampling module is P87C591 singlechip. The main functions of master module include estimation of state of charge (SOC) and security management of lithium ion battery packs, and the main functions of sampling module include battery information collection and CAN bus based communication. SOC estimation method based on Extended Kalman filtering (EKF) theory is adopted in this article to precisely estimate the SOC of lithium ion battery packs.


The green energy evolution initiated the use of electric and hybrid electric vehicles at present on roads. These vehicles extensively use different types of batteries and among them lithium ion batteries are prominent. The Li-ion battery pack constitutes number of Li-ion battery cells connected in series and parallel configuration. This battery bank needs a suitable battery management system for its efficient operation. This paper presents a novel battery management system to monitor and control the battery current, voltage, state of charge and most importantly the cell temperature. The detail BMS scheme for Li-ion battery pack is presented and simulation is carried out to validate its performance with a driving cycle of electric car.


2016 ◽  
Vol 6 (1) ◽  
pp. 19
Author(s):  
Wisnu Ananda ◽  
Mehammed Nomeri

Battery-powered Electric Vehicles (BEVs) such as electric cars, use the battery as the main power source to drive the motor, in addition to lighting, horn, and other functions. Currently, Balai Besar Bahan dan Barang Teknik (B4T) has been conducting research in Lithium-ion (Li-ion) battery prototype for an electric vehicle. However, the management system in accordance with the electrical characteristics of the battery prototype is still not available. Thus, to integrate the battery prototype with electrical components of the electric vehicle, it is necessary to design Battery Management System (BMS). Two important battery parameters observed are State of Charge (SOC) and State  of  Health  (SOH).  The  method  used  for  SOC  was  Coulomb  Counting.  SOH  was  determined  using  a combination between Support Vector Machine (SVM) and Relevance Vector Machine (RVM). Based on the experiments by using BMS, the battery performance could be more controlled and produces a linear curve of SOC and SOH.Keywords: Battery, electric vehicle, Battery Management System (BMS), Lithium-ion (Li-ion).


Sign in / Sign up

Export Citation Format

Share Document