Design and Research of Offshore Drilling Platform Electric Power System

2014 ◽  
Vol 986-987 ◽  
pp. 915-918
Author(s):  
Ping Liang Chen

In order to design a reasonable safe power control system and realize the automated management of offshore drilling system, this paper analyzes the electric system features and grid configuration of drilling platform; power station design and short circuit calculation; electrical power system electroplax selection. This system adopts oceanographic engineering software EDSA for construction and parameter input and conducts short-circuit calculation for modeling and simulation. The electric system design and short-circuit calculation can be examined by simulation result and real platform.

2002 ◽  
Vol 12 (06) ◽  
pp. 1333-1356 ◽  
Author(s):  
YOSHISUKE UEDA ◽  
HIROYUKI AMANO ◽  
RALPH H. ABRAHAM ◽  
H. BRUCE STEWART

As part of an ongoing project on the stability of massively complex electrical power systems, we discuss the global geometric structure of contacts among the basins of attraction of a six-dimensional dynamical system. This system represents a simple model of an electrical power system involving three machines and an infinite bus. Apart from the possible occurrence of attractors representing pathological states, the contacts between the basins have a practical importance, from the point of view of the operation of a real electrical power system. With the aid of a global map of basins, one could hope to design an intervention strategy to boot the power system back into its normal state. Our method involves taking two-dimensional sections of the six-dimensional state space, and then determining the basins directly by numerical simulation from a dense grid of initial conditions. The relations among all the basins are given for a specific numerical example, that is, choosing particular values for the parameters in our model.


2015 ◽  
Vol 793 ◽  
pp. 65-69 ◽  
Author(s):  
Abadal Salam T. Hussain ◽  
Waleed A. Oraibi ◽  
Fadhel A. Jumaa ◽  
F. Malek ◽  
Syed F. Ahmed ◽  
...  

Electrical Power System protection is required to protectboth the user and the system equipment itself fromany fault, hence electrical power system is not allowed to operate without any protection devices installed. Power System fault is defined as the undesirable condition that occurs in the power system. Some of these undesirable conditions are short circuit, current leakage, ground faultand over-under voltage. With the increasing loads, voltages and short-circuit duty in power plant, over voltage protection has become more important today. Here, the component that had been used is PIC 16F877a microcontroller to control the whole system and especially on the circuit breakers as well as the LCT display unit is used to display the voltage level and type of generator that used to serve the load. Sensors are used to measure both thevoltage and the load. The controlled digital signal from PIC microcontroller is converted by using the digital analog converter to control the whole circuit. Thus a device called protective relay is created to meet this requirement. The protective relay is mostlyoften coupled with circuit breaker in a way that it can isolate the abnormal condition in the system.


2020 ◽  
Vol 5 (6) ◽  
pp. 665-674
Author(s):  
Kemei Peter Kirui ◽  
David K. Murage ◽  
Peter K. Kihato

The ever increasing global demand on the electrical energy has lead to the integration of Distributed Generators (DGs) onto the distribution power systems networks to supplement on the deficiencies on the electrical energy generation capacities. The high penetration levels of DGs on the electrical distribution networks experienced over the past decade calls for the grid operators to periodically and critically asses the impacts brought by the DGs on the distribution network operations. The assessment on the impacts brought by the DGs on the distribution network operations is done by simulating the dynamic response of the network to major disturbances occurring on the network like the faults once the DGs have been connected into it. Connection of Wind Turbine Generators (WTGs) into a conventional electrical energy distribution network has great impacts on the short circuit current levels experienced during a fault and also on the protective devices used in protecting the distribution network equipment namely; the transformers, the overhead distribution lines, the underground cables and the line compensators and the shunt capacitors commonly used/found on the relatively long rural distribution feeders. The main factors which contribute to the impacts brought by the WTGs integration onto a conventional distribution network are: The location of interconnecting the WTG/s into the distribution feeder; The size/s of the WTG/s in terms of their electrical wattage penetrating the distribution network; And the type of the WTG interfacing technology used labeled/classified as, Type I, Type II, Type III and Type IV WTGs. Even though transformers are the simplest and the most reliable devices in an electrical power system, transformer failures can occur due to internal or external conditions that make the transformer incapable of performing its proper functions. Appropriate transformer protection should be used with the objectives of protecting the electrical power system in case of a transformer failure and also to protect the transformer itself from the power system disturbances like the faults. This paper was to investigate the effects of integrating WTGs on a distribution transformer Fuse-Fuse conventional protection coordination scheme. The radial distribution feeder studied was the IEEE 13 node radial test feeder and it was simulated using the Electrical Transient Analysis Program (ETAP) software for distribution transformer Fuse-Fuse protection coordination analysis. The IEEE 13 Node radial test feeder In-line transformer studied is a three-phase  step down transformer having a star solidly grounded primary winding supplied at  and a star solidly grounded secondary winding feeding power at a voltage of . The increase on the short circuit currents at the In-line transformer nodes due to the WTG integration continuously reduces the time coordination margins between the upstream fuse F633 and the downstream fuse F634 used to protect the transformer.


2017 ◽  
Vol 59 (1) ◽  
Author(s):  
David Steber

AbstractThe further integration of storage into the electric power system is unavoidable regarding the still increasing share of renewables and current market developments. Therefore a lot of different storage technologies are available today. The presented PhD-Thesis project will focus on integrating battery storage to the power system under different system and market conditions. Therefore, coupled control algorithms for single and virtual battery storage systems have to be developed depending on the battery's scope. For analyzing the reliability of different battery's scopes, the developed models will be integrated into an electric power system model for studying their influence on the power system and market concerning different development scenarios (renewables, nuclear phase-out). First actions dealt with the provision of Frequency Containment Reserve (FCR) power by a virtual battery storage under certain conditions in Germany. First results show appropriate working of implemented control algorithms and reliability for different shareholders.


2015 ◽  
Vol 18 (2) ◽  
Author(s):  
Dzulfikar Muhammad Azhar ◽  
Yuniarto Yuniarto

Dzulfikar Muhammad Azhar, Yuniarto, in this paper explian that disruption of the power distribution network of 20 KV greatly influence the level of reliability of electric power system. Localize interference by means of network down one by one causing a long recovery time. As a result, SAIDI relatively high value. Protection Relays 551 SEL has a feature that can save the nominal fault current value last received. The value stored in the relay memory. Value of fault current can be processed into the distance nuisance. Thus, the fault current value can help officers to track the fault location based on distance. SCADA as a system that monitors and controls the electrical power system equipment remotely in real time on duty to display the current value of disturbance located at 551 SEL protection relays to be sent to the Control Center or the Master Station. Keywords : SCADA, fault current, relay protection 551 SEL


2013 ◽  
Vol 676 ◽  
pp. 181-185
Author(s):  
Shan He ◽  
Wei Qing Wang ◽  
Hai Yun Wang ◽  
Xin Yan Zhang ◽  
Jing Cheng ◽  
...  

Doubly-fed Induction Generator (DFIG) is an important equipment in electrical power system. Operation state of DFIG is complex: it works at subsynchronism, synchronization and hypersynchrony state. Electromagnetic field is various. There is winding on stator and rotor, it’s more possible for fault to happen. Text discuss structure of DFIG, finite element method (FEM) model including stator rotor and air-gap is created, typical magnetic field is calculated including normal operation state, turn-to-turn and single-phase short-circuit happened, result is analysed, distribution discipline of multiple magnetic field is obtained. It provide the evidence to early failure prediction, basic data to develop and design high-capacity generator, optimize structure and magnetic field analysis of DFIG.


2021 ◽  
Vol 6 (2) ◽  
pp. 1422
Author(s):  
Doni Abdul Mukti ◽  
Budi Sudiarto

Protection is a safety in the electric power system installed in the electric power distribution system, power transformer, electric power transmission, and electric generator used to secure the power system electricity from electrical disturbances or overloads by separating the disturbed parts of the electric power system from the undisturbed electrical power system so that the undisturbed electrical system can continue to work. The protection system at the T75B substation has a work failure where when there is a short circuit on the consumer side, it causes the PMT (Power Breaker) for the Malibu Feeder at the Kebon Sirih Substation to trip while the CBO (Circuit Breaker Outgoing) cubicle at the T75B substation does not trip. This resulted in an unexpected widespread blackout. To find out the cause of the failure of the protection system, several tests and analyzes were carried out, namely protection design testing, protection relay coordination testing, protection system construction analysis, protection equipment performance testing. It is hoped that the test results can be used as a reference for improvement so that similar failures do not recur.


AVIA ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
D R Agustiningsih, E Suwondo, M Kusni

The development of aircraft secondary power technology is moving from mechanical power, pneumatic power and hydraulic power to electric power. The trend toward electric power is known as More Electric Aircraft (MEA). Modern military aircraft are designed using 270VDC for electric power system. Today, some military aircraft still use 115VAC/400Hz for their electrical power system. If this type of aircraft need provides 270VDC electrical power, then they require Multi-Pulse Transformer Rectifier Unit (TRU). The development of this type TRU has not been aimed to comply with aircraft military standards. This research investigates the variation of the number of pulses (p) and firing angle (α) to the amplitude ripple voltage, output voltage, and distortion factor in order to comply with the MIL-STD-704F standards. The multi-pulse transformer rectifier unit being analyzed consists of 6-Pulse and 12-Pulse. The research shows that the amplitude ripple voltage and distortion factor of the 6-Pulse TRU do not comply MIL-STD-704F. The amplitude ripple voltage and distortion factor of 12-Pulse comply MIL-STD-704F with firing angle (α) ≤4°.Keywords: Transformer Rectifier Unit, thyristor, ripple voltage, distortion factor, firing angle


Author(s):  
Hui Hwang Goh ◽  
Sy yi Sim ◽  
Mohamad Amirul Hafiz Mohamed ◽  
Abdul Khairi Abdul Rahman ◽  
Chin Wan Ling ◽  
...  

<p>Electric fault is the main challenge in the process of providing continues electric supply. Fault can occur at anytime and anywhere. Due to the fault causes are mainly based on natural disaster or accident. Most fault occurrence hardly predicted nor avoided. Therefore, a quick response fault detection is necessary to ensure that the fault area is maintained to ensure a continuous power supply system. Hence, a system is required to detect and locate the position of the fault in the power system especially in the transmission line and distribution line. This paper will review the type of fault that possibly occurs in an electric power system, the type of fault detection and location technique that are available together with the protection device that can be utilized in the power system to protect the equipment from electric fault.</p><p> </p>


Author(s):  
Gustavo Vinicius Duarte Barbosa ◽  
José Ronaldo Tavares Santos

Electrical power systems are susceptible to faults caused, for example, by storm, pollution, vandalism, lightning, salt spray, etc. The unscheduled interruption in the supply of electricity to consumers, whether industrial, residential, or commercial, entails severe fines for the transmission utility and/or electricity distributor, imposed by the regulatory agency. Thus, the EPS must have a well-dimensioned protection system, capable of identifying the fault, which is characterized by a single-phase, two-phase, three-phase short circuit, among others, and interrupt the missing section in the minimum time so that the effects of this lack are as small as possible for the SEP, especially with regard to its integrity and operational security.


Sign in / Sign up

Export Citation Format

Share Document