The Application of Computer Numerical Simulation in the Sports Science Study

2014 ◽  
Vol 989-994 ◽  
pp. 4367-4370
Author(s):  
Shang Guan Yi Qin

In this paper, the author uses the literature review methods to talk about the application of the computer numerical simulation technology, combining the research methods and features of the sports science. In the sports science study, the author expounds the application methods, procedure, steps and functions of computer numerical simulation in terms of the establishment of the digital simulation model of the human body motion, the procedures, data input, data pre-treatment and calculation of computer numerical simulation, the technical plan modification of the human body movement, the new movement design as well as the application value of computer numerical simulation in the skill training.

2014 ◽  
Vol 989-994 ◽  
pp. 4362-4366
Author(s):  
Mei Hong Gao

In this paper, the author adopts the literature review research methods, starting from the perspective of the sports science research methodology, and discussing the research methods and procedures of the computer digital simulation technology in the technical structure study of the martial arts. In the martial arts study, the author expounds the application methods, procedure, steps and functions of the computer digital simulation technology in terms of the establishment of the structural digital models of the human body, the procedures, data input, data pre-treatment and calculation of the computer digital simulation technology, the structure models modification of the martial arts, the new action skill model design as well as the application value of the computer digital simulation technology in the skill training.


2010 ◽  
Vol 22 (4) ◽  
pp. 439-446 ◽  
Author(s):  
Sho Yokota ◽  
◽  
Hiroshi Hashimoto ◽  
Yasuhiro Ohyama ◽  
Jinhua She ◽  
...  

This paper classifies human body movements when an electric wheelchair was controlled using a Human Body Motion Interface (HBMI) by a Self-Organizing Map (SOM) and proposes control based on classification results. The Human Body Motion Interface (HBMI) uses body movement following voluntary motion. This study focuses on electric wheelchair control as an application of the HBMI. The viability of the HBMI was confirmed using Center Of Weight (C.O.W.) from pressure distribution information on backrest in the wheelchair to control it. If body movement concentrated on a single point at C.O.W. in pressure distribution, a problem occurred because the system would recognize even different body-movement patterns as the same movement. We call body movement taking the same C.O.W. even if it has a different body-movement pattern movement confusion. We solve the movement confusion problem and enhance wheelchair control, classifying body movement using the SOM and reflecting this classification result to improve wheelchair control. Experimental results showed that movement confusion is solved and wheelchair control improved.


Author(s):  
Xinming Li ◽  
SangHyeok Han ◽  
Mustafa Gul ◽  
Mohamed Al-Hussein

The construction manufacturing industry in North America has a disproportionately high number of lost-time injuries due to the higher physical demand of labour-intensive tasks. It is thus essential to investigate the physical demands of body movement in the workplace in order to identify worker exposure to ergonomic risk. This paper presents a methodology for converting video-captured body movements in an actual manufacturing plant into 3D virtual animations for ergonomic risk analysis. Through 3D virtual animation, dynamic human body data can be obtained (such as joint angles) for body posture risk assessment analysis using existing risk assessment algorithms. The presented framework enables body motion risk identification by detecting awkward body postures, evaluating handled force/load and frequency that cause ergonomic risk during body movements of workers. The capability of the 3D modelling can be extended to support the re-design of the workplace and optimization of human body movement accordingly in order to mitigate ergonomic risk. The methodology is implemented in a case study in order to analyze operational tasks in manufacturing plants. Modified work recommendations are expected as a result of this systematic 3D ergonomic analysis which will further reduce potential injuries and workersäó» compensation insurance costs in the long term.


Author(s):  
Yu Shao ◽  
Xinyue Wang ◽  
Wenjie Song ◽  
Sobia Ilyas ◽  
Haibo Guo ◽  
...  

With the increasing aging population in modern society, falls as well as fall-induced injuries in elderly people become one of the major public health problems. This study proposes a classification framework that uses floor vibrations to detect fall events as well as distinguish different fall postures. A scaled 3D-printed model with twelve fully adjustable joints that can simulate human body movement was built to generate human fall data. The mass proportion of a human body takes was carefully studied and was reflected in the model. Object drops, human falling tests were carried out and the vibration signature generated in the floor was recorded for analyses. Machine learning algorithms including K-means algorithm and K nearest neighbor algorithm were introduced in the classification process. Three classifiers (human walking versus human fall, human fall versus object drop, human falls from different postures) were developed in this study. Results showed that the three proposed classifiers can achieve the accuracy of 100, 85, and 91%. This paper developed a framework of using floor vibration to build the pattern recognition system in detecting human falls based on a machine learning approach.


2011 ◽  
Vol 189-193 ◽  
pp. 2535-2538 ◽  
Author(s):  
Hong Yan ◽  
Wen Xian Huang

The thixo-forging of magnesium matrix composite was analyzed with computer numerical simulation based on rigid viscoplastic finite element method. The constitutive model of SiCp/AZ61 composite was established in our prior literature. Behavior of metal flow and temperature field were obtained. The differences between traditional forging and thixo-forging processes were analyzed. Results indicated that thixo-forging was better in filling cavity than forging. Simulation results were good agreement with experimental ones.


2013 ◽  
Author(s):  
Yuichiro Hirose ◽  
Mitsuru Enomoto ◽  
Takashi Sasaki ◽  
Eiichi Yasuda ◽  
Masatoshi Hada

Author(s):  
Bu S. Park ◽  
Sunder S. Rajan ◽  
Leonardo M. Angelone

We present numerical simulation results showing that high dielectric materials (HDMs) when placed between the human body model and the body coil significantly alter the electromagnetic field inside the body. The numerical simulation results show that the electromagnetic field (E, B, and SAR) within a region of interest (ROI) is concentrated (increased). In addition, the average electromagnetic fields decreased significantly outside the region of interest. The calculation results using a human body model and HDM of Barium Strontium Titanate (BST) show that the mean local SAR was decreased by about 56% (i.e., 18.7 vs. 8.2 W/kg) within the body model.


Sign in / Sign up

Export Citation Format

Share Document