Synthesis and Self-Assembly Study of Biodegradable Amphiphilic Triblock Copolymers with PEG Block

2014 ◽  
Vol 998-999 ◽  
pp. 95-98
Author(s):  
Xu Du ◽  
Qin Wang ◽  
Chuan Dong Wang ◽  
Yang Liu

Three biodegradable amphiphilic triblock copolymers: polylactide-poly (ethylene glycol)-polylactide (PLA-PEG-PLA), poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone) (PCL-PEG-PCL) and poly (lactide-glycolide)-poly (ethylene glycol)-poly (lactide-glycolide) (PLGA-PEG-PLGA) were synthesized. Their chemical structures were characterized. In aqueous solution, their self-assembly and degradation were studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Spherical micelles were formed in aqueous solution via self-assembly of the amphiphilic triblock copolymers. After degradation, the PLA-PEG-PLA and PCL-PEG-PCL micelles became smaller and the PLGA-PEG-PLGA micelles change to vesicles, which should mainly attribute to their different degradation speed.

RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24142-24153
Author(s):  
Andreea S. Voda ◽  
Kevin Magniez ◽  
Nisa V. Salim ◽  
Cynthia Wong ◽  
Qipeng Guo

We report for the first time the use of Nα-Boc-l-tryptophan for the synthesis of amphiphilic BAB triblock copolymers for potential drug delivery applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64170-64179 ◽  
Author(s):  
Jing Song ◽  
Qun Ye ◽  
Wang Ting Lee ◽  
Xiaobai Wang ◽  
Tao He ◽  
...  

A series of perfluoropolyether/poly(ethylene glycol) (PFPE/PEG) triblock copolymers PEG/PFPE/PEG (P1–P3) and PFPE/PEG/PFPE (P4–P5) were prepared via thiol–ene click reaction in high yields.


2013 ◽  
Vol 11 (2) ◽  
pp. 149-156 ◽  
Author(s):  
Ioana Negru ◽  
Mircea Teodorescu ◽  
Paul O. Stănescu ◽  
Constantin Drăghici ◽  
Anamaria Lungu ◽  
...  

2013 ◽  
Vol 662 ◽  
pp. 136-139
Author(s):  
Ge Yang ◽  
Ke Shuai Lu ◽  
Xue Yan Su

The paper describes the preparation and characterization of novel biodegradable nanoparticles based on self-assembly of poly-gamma-glutamic acid (γ-PGA) and poly(ethylene glycol) (PEG). The nanosystems were stable in aqueous media at low pH conditions. Solubility of the systems was determined by turbidity measurements. The particle size and the size distribution of the polyelectrolyte complexes were identified by dynamic lightscattering and transmission electron microscopy.It was found that the size and size distribution of the nanosystems depends on the concentrations of γ-PGA and PEG solutions and their ratio as well as on the pH of the mixture and the order of addition. The diameter of individual particles was in the range of 30–270 nm. measured by TEM, and the average hydrodynamic diameters were between 130 and 300 nm. These biodegradable, self-assembling stable nanocomplexes might be useful for several biomedical applications.


2007 ◽  
Vol 21 (28n29) ◽  
pp. 4961-4966
Author(s):  
HUI-RU MA ◽  
JIAN-GUO GUAN ◽  
RUN-ZHANG YUAN

The self-assembly properties and ER effects of the Polyaniline-Poly(ethylene glycol)-Polyaniline (PAn-PEG-PAn) triblock copolymers were studied in this paper. The results indicate that with the increase of solubility parameter of the solvent, PAn-PEG-PAn copolymers form into different morphologies of spheriods, vesicles and rods. PAn-PEG-PAn copolymers with vesicles morphology show the highest polarization strength, while those with rods have the most rapid polarization rate. Among the PAn-PEG-PAn copolymers of different morphologies, the PAn-PEG-PAn copolymer vesicles show the strongest ER effect.


Sign in / Sign up

Export Citation Format

Share Document