Tunable and Self-Sensing Microwave Composite Materials Incorporating Ferromagnetic Microwires

2008 ◽  
Vol 54 ◽  
pp. 201-210 ◽  
Author(s):  
Dmitriy Makhnovskiy ◽  
Arkadi Zhukov ◽  
V. Zhukova ◽  
J. Gonzalez

New types of stress sensitive and magnetic field tunable microwave composite materials are discussed where embedded short ferromagnetic microwire inclusions are used as controllable radiative elements. The dc external magnetic field is applied to the whole composite structure. And, the local stress is transferred to the individual microwires through the accommodating composite matrix. The spatial and angular distributions of microwires can be random, partly ordered, or completely ordered. For a wide frequency range, the free-space microwave response of a wire-filled composite can be characterized by a complex effective permittivity with resonance frequency dispersion. The latter depends on the conductive and magnetic properties of the microwire inclusions that contribute to the ac microwire magnetoimpedance (MI). In the vicinity of the so-called antenna resonance frequency, which is defined by the length of microwires and matrix dielectric constant, any variations in the MI of the microwires will result in large changes of the effective permittivity, and hence the reflection and transmission coefficients for an incident microwave. The field or stress dependence of the effective permittivity arises from the corresponding field or stress sensitivity of the MI in the ferromagnetic microwires with induced circumferential or helical magnetic anisotropy, respectively. The strong field tunable effect in the proposed composite materials can be utilized to introduce reconfigurable microwave properties in coatings, absorbers, and randomizers, and also in new media such as microwave metamaterials and bandgap wire structures. A maximum field tunability of 30 dB was achieved for free-space transmission measurements when the external magnetic field changed from zero to ~40 Oe. The stress sensitivity of reflection and transmission coefficients opens up new possibilities for the distant non-destructive testing and evaluation of composite materials both in the laboratory environment and large scale applications. The stress tunability of transmission coefficient may reach up to 5-8 dB within the elastic limit. The reflection coefficient usually demonstrates less tunability in both cases (field and stress dependent) and may require a multilayer structure to achieve better results, but it is always strong enough for the stress sensing applications.

2009 ◽  
Vol 1223 ◽  
Author(s):  
Mihail Ipatov ◽  
Larissa Panina ◽  
Gloria R. Aranda ◽  
Valentina Zhukova ◽  
Arcady Zhukov ◽  
...  

ABSTRACTThe effect of the external magnetic field on the dispersion of the effective permittivity in arrays of parallel CoFe-based amorphous wires is demonstrated by measuring S-parameters in free space in the frequency band of 0.9-17 GHz. The magnetic field is applied along the wires sensitively changing their magnetization and high frequency impedance. Based on the measurements of magneto-impedance in a single wire and transmission/reflection spectra of composites in free space, we show the correlation between magneto-impedance and the field dependence of the effective permittivity.


2005 ◽  
Vol 2 (2) ◽  
pp. 35
Author(s):  
Zaiki Awang ◽  
Deepak Kumar Ghodgaonkar ◽  
Noor Hasimah Baba

A contactless and non-destructive microwave method has been developed to characterize silicon semiconductor wafers from reflection and transmission measurements made at normal incidence using MNDT. The measurement system consists of a pair of spot-focusing horn lens antenna, mode transitions, coaxial cables and a vector network analyzer (VNA). In this method, the free-space reflection and transmission coefficients, S11 and S21 are measured for silicon wafers sandwiched between two Teflon plates of 5mm thickness which act as a quarter-wave transformer at mid-band. The actual reflection and transmission coefficients, S11 and S21 of the silicon wafers are then calculated from the measured S11 and S21 using ABCD matrix transformation in which the complex permittivity and thickness of the Teflon plates are known. From the complex permittivity, the resistivity and conductivity can be obtained. Results for p-type and n-type doped silicon wafers are reported in the frequency range of 11 – 12.5 GHz. The dielectric constant of silicon wafer obtained by this method agrees well with that measured in the same frequency range by other conventional methods.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
J. Y. Chen ◽  
H. L. Chen ◽  
E. Pan

Reflection and transmission coefficients of plane waves with oblique incidence to a multilayered system of piezomagnetic and/or piezoelectric materials are investigated in this paper. The general Christoffel equation is derived from the coupled constitutive and balance equations, which is further employed to solve the elastic displacements and electric and magnetic potentials. Based on these solutions, the reflection and transmission coefficients in the corresponding layered structures are subsequently obtained by virtue of the propagator matrix method. Two layered examples are selected to verify and illustrate our solutions. One is the purely elastic layered system composed of aluminum and organic glass materials. The other layered system is composed of the novel magnetoelectroelastic material and the organic glass. Numerical results are presented to demonstrate the variation of the reflection and transmission coefficients with different incident angles, frequencies, and boundary conditions, which could be useful to nondestructive evaluation of this novel material structure based on wave propagations.


Sign in / Sign up

Export Citation Format

Share Document