Magnetic Properties of Cobalt and Manganese Oxide Spinel Ceramics

2010 ◽  
Vol 67 ◽  
pp. 143-148 ◽  
Author(s):  
Sophie Guillemet-Fritsch ◽  
Christophe Tenailleau ◽  
Helene Bordeneuve ◽  
Abel Rousset

Magnetic susceptibility measurements, magnetization and neutron diffraction results at low temperature for cobalt and manganese oxide spinel ceramics are presented. The Curie temperature varies similarly with the sample composition in ceramics and powders. The experimental molar Curie constant variation is explained by the presence of Co2+, CoIII, Mn3+ and Mn4+, and possibly Co3+ in the octahedral sites for the cobalt rich phases. The magnetic moments of the cations in tetrahedral and octahedral sites are not collinear and the global magnetization is oriented in a third direction.

1993 ◽  
Vol 07 (01n03) ◽  
pp. 818-821 ◽  
Author(s):  
D. RAVOT ◽  
O. GOROCHOV ◽  
T. ROISNEL ◽  
G. ANDRE ◽  
F. BOUREE-VIGNERON ◽  
...  

For all the Rare-Earth (R) the R2In form in the same crystal structure (P63/mmc). These compounds show a great variety of magnetic behaviors. When the temperature decreases, the magnetic susceptibility of Er2InTb2In and Gd2In increases, passes through a maximum then decreases. For Gd2In this behavior was associated with change from a paramagnetic to a ferromagnetic then to an antiferromagnetic state. We have performed magnetic, transport (Tb, Er), Mössbauer spectroscopy (Er) and powder neutron diffraction experiments (Gd, Tb, Er) on these compounds. Unlike Gd2In the resistivity of Tb2In and Er2In does not reveal any anomaly at the temperature where the susceptibility begins to decrease and the Tb2In and Er2In magnetizations show the same behavior at all temperatures in the ordered region. Neutron diffraction experiments reveal ferromagnetic and antiferromagnetic structures at low temperature.


2019 ◽  
Vol 61 (3) ◽  
pp. 472
Author(s):  
В.Г. Плещев ◽  
Н.В. Селезнева

AbstractThis is a pioneering work on the synthesis of molybdenum diselenides intercalated by chromium atoms. Their magnetic properties are studied at various intercalant concentrations, temperatures, and magnetic fields. The temperature dependences of effective magnetic moments and positive paramagnetic Curie temperatures in the paramagnetic region evidence the feasible ferromagnetic interactions between intercalated atoms. The existence of low-temperature ferromagnetic state in Cr_ x МоSe_2 is confirmed by hysteresis phenomena in temperature and field dependences of magnetization and magnetic susceptibility.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


2003 ◽  
Vol 17 (27n28) ◽  
pp. 1453-1460
Author(s):  
ILEANA LUPSA

The magnetic properties of U 1-x Dy x Al y Ni 5-y (y=0,1) systems were investigated in the 2(5)–600 K temperature range and for fields up to 80 kOe. The systems having x≥0.2 are magnetically ordered with low transition temperatures and magnetization mainly due to the Dy contribution. The nickel exhibits magnetic moments, very weak in the low temperature range and well-defined effective moments over transition temperatures. The nickel behavior is discussed in terms of the spin fluctuation model.


2021 ◽  
Vol 1028 ◽  
pp. 15-20
Author(s):  
Muhammad Abdan Syakuur ◽  
Yati Maryati ◽  
Togar Saragi ◽  
Risdiana

Structure and magnetic properties of electron-doped superconducting cuprates have been investigated in order to study the effect of magnetic impurity to its physical properties. Here, we reported structure and magnetic properties of Eu1.88Ce0.12Cu1-yZnyO4+α-δ (ECCZO) with y = 0 and 0.03. The properties of ECCZO have been studied from X-ray diffraction data and temperature dependence of magnetic susceptibility data, to elucidate the effect of partial substitution of non-magnetic impurity Zn for Cu to its structure, Tc and the value of magnetic moments per unit volume extracted from susceptibility data in normal state. Magnetic-susceptibility measurements were carried out down to 2 K on-field cooling at 5 Oe for Eu1.88Ce0.12Cu1-yZnyO4+a-d with y = 0 and 0.03. For ECCZO sample with y = 0 and d = 0.0669 indicated the change of magnetic behavior from paramagnetic to diamagnetic below 12 K which is addressed to the Tc onset of this samples. Diamagnetic behavior is observed starting from about 12 K. Above 12 K, all samples show paramagnetic behavior with the values of the magnetic moment in every volume unit increased with increasing Zn.


1987 ◽  
Vol 01 (03n04) ◽  
pp. 989-992 ◽  
Author(s):  
M.T. Causa ◽  
S.M. Dutrús ◽  
C. Fainstein ◽  
G. Nieva ◽  
H.R. Salva ◽  
...  

We report here normal and superconducting properties of ABa 2 Cu 3 O 7−δ (with A=Y, Gd, Dy, and Er) and of Fe doped YBa2Cu3O7−δ . Results from X-ray powder diffraction, electrical resistivity, magnetic susceptibility, ESR, and specific heat measurements are presented, leading to a characterization of the magnetic properties of these materials. The effect of structural modifications of the lattice on the superconducting properties and the relative insensitivity of Tc to the presence of magnetic moments is discussed.


1967 ◽  
Vol 20 (11) ◽  
pp. 2403 ◽  
Author(s):  
SJ Gruber ◽  
CM Harris ◽  
E Kokot ◽  
SL Lenzer ◽  
TN Lockyer ◽  
...  

The magnetism of various copper(II) complexes of pyridine and quinoline N-oxides1 has been further investigated. The compounds Cu(C5H5NO)nX2 (where n = 4 or 6, X = ClO4; n = 2, X = Cl, Br, NCS; n = 1, X = Cl, Br, CH3COO) and Cu(C9H7NO)nX2 where n = 4, X = ClO4; n = 2, X = Cl, Br, NO3; n = 1, X = Cl, Br, CH3COO) have been studied. The variation of the magnetic susceptibilities of most of these compounds is reported over a temperature range. The variation of the magnetic susceptibility with temperature for the weakly paramagnetic complex Cu(C5H5NO)Cl2 is discussed in terms of the binuclear oxygen-bridged structure previously postulated.1 The compound exhibits anti-ferromagnetic interaction between pairs of copper(II) atoms with a singlet-triplet separation of 2.1 kcal/mole. The compounds Cu(C5H5NO)2Cl2, Cu(C5H5NO)Br2, and Cu(C9H7NO)X2 (X = Cl, Br) are more weakly paramagnetic due to a larger singlet-triplet separation. The compound Cu(C5H5NO)2Br2 possesses a higher paramagnetic susceptibility than those of the previous compounds, and its magnetic properties are consistent with a dimeric structure involving a singlet- triplet separation of 0.7 kcal/mole. The copper(II) acetate adducts, Cu(CH3COO)2,L (L = C5H5NO or C9H7NO), possess very similar magnetic properties to binuclear copper(II) acetate monohydrate and presumably possess a similar structure, with the N-oxides replacing the water molecules. These compounds exhibit singlet-triplet energies of c. 1 kcal/mole similar to values reported for a large number of copper(II) alkanoates. The compounds Cu(C5H5NO)2(NCS)2, Cu(C5H5NO)4(ClO4)2, Cu(C5H5NO)6- (ClO4)2, Cu(C9H7NO)2X2 (X = Cl, Br, NO3), all obey the Curie-Weiss law and possess mean magnetic moments of 1.89, 1.80, 1.93, 1.88, 1.96, and 1.88 B.M. (corrected for θ values of -12, -7, -8, + -4, and -16�) respectively.


Sign in / Sign up

Export Citation Format

Share Document