Lectinhistochemistry Evaluation of Bone after Implantation with Macroporous Titanium Samples

2012 ◽  
Vol 77 ◽  
pp. 190-195 ◽  
Author(s):  
Kalan Bastos Violin ◽  
Tamiye Simone Goia ◽  
José Carlos Bressiani ◽  
Ana Helena de Almeida Bressiani

Titanium and its alloys are widely used as biomaterials and interact well with bone tissue. In order, to evaluate more than just morphological osseointegration by histological slides the work aimed to approach a molecular evaluation of bone-implant using lectinhistochemistry (LHC), which binds with high specificity carbohydrates (sugar residues) presents in membrane glycoproteins with the use of lectins. The implanted samples were obtained by powder metallurgy, Ti-13Nb-13Zr alloy with and without gelatin. Pores were achieved by adding gellatin 5 wt% to the hydrogenated metallic powder, after near net shape processing, the samples were thermal treated in vacuum (300 °C/90min) and sintered in high-vacuum (1150 °C/14h). The samples were characterized for porosity (~30%), and subsequently were implanted in rat’s femur bone. After 4 weeks of healing process, bone with implant were sampled to perform LHC in paraffin embedded tissue in histological slides using the lectins PNA, UEA-1, WGA, sWGA and RCA-1. All samples osseointegrated well with the bone, no fibrous capsule was present in the bone which was in contact with the implant. With the molecular approach of osseointegration, adjustments in the processing and structure of macroporous titanium based implants can be performed to achieve friendly structure.

2019 ◽  
Vol 15 (4) ◽  
pp. 548-554
Author(s):  
Izzawati Basirom ◽  
Mohd Afendi Rojan ◽  
Mohd Shukry Abdul Majid ◽  
Nor Alia Md Zain ◽  
Mohd Yazid Bajuri

Implant screws failure commonly occurs due to the load that constantly generated by the patient’s body to the fracture area. Bending load is often encountered in femur bone due to lateral impact which affected the bone and also the implants installed. Consequently, the load will lead to the failure of implants that can cause loosening or tightening of implants. Henceforth, in this manner, it is significant to study the bending behavior of bone implant in femur bone. The aim of this study was to analyze the stress shielding of bone implant on the internal fixator. 3D technique is able to show the overall deformation and stress distribution. The lower the biomechanical compatibility, the lower the STP value obtained. In addition, the variation of elastic modulus (E) of the screws materials, 200GPa (Stainless Steel) and 113.8GPa (Titanium) resulted in the increase of the total stress transferred (STP) between screw and bone interface. In this work, strain energy density (SED) was determined as a good indicator of stress shielding.


2012 ◽  
Vol 715-716 ◽  
pp. 794-799 ◽  
Author(s):  
Cheng Liang Miao ◽  
Cheng Jia Shang ◽  
Guo Dong Zhang ◽  
Guo Hui Zhu ◽  
Hatem S. Zurob ◽  
...  

Stress relaxation was studied in a series of low carbon, high Mn microalloyed steels containing 0.012, 0.06 and 0.1 wt% Nb. The stress-relaxation curves were modeled using a physically-based model that takes into account the time evolution of precipitation, recovery and recrystallization as well as their interactions. The results confirm that high Mn-high Nb design can offer distinct advantage over the low-Mn design for the application of near net shape processing.


2020 ◽  
Vol 867 ◽  
pp. 196-203
Author(s):  
Achmad Syaifudin ◽  
Djoko Kuswanto ◽  
Teguh Hari Prasetyo

In the case of femur bone fracture, internal fixation is usually applied for the treatment due to the convenience and amenities of follow-up care. Due to a high demand for internal fixation implants in Indonesia, causing Pelopor Teknologi Implantindo Inc. (PTI Inc., Mojokerto - Indonesia) produces conventional implant material made from annealed local raw material of 316L stainless steel, with a yield strength of 317 MPa and ultimate tensile strength of 580 MPa. Compared to implant material in ASTM F138, it has a little higher value of both yield and ultimate tensile strength. To determine the effects of material type, normal stresses will be used to evaluate the fractured bone, while von Mises stresses will be used to analyze the strength of fixation plate. Besides, influence of material variation to the bone healing process is also discussed. Transversal-type fracture is chosen for fracture modeling of femoral shaft. The loading is taken from body weight of Asians, which is applied at femur head. The simulation result indicates that in the case of conventional fixation plate, there is no significant influence on the bone healing caused by different material type.


2012 ◽  
Vol 529-530 ◽  
pp. 574-579
Author(s):  
Tamiye Simone Goia ◽  
Kalan Bastos Violin ◽  
José Carlos Bressiani ◽  
Ana Helena de Almeida Bressiani

Titanium and its alloys are the main metals studied as porous metallic implants by their excellent mechanical properties and biological interactions. Production methods of porous metallic materials are based on powder metallurgy (PM), because it allows the manufacturing of parts with complex shapes and dimensions close to the finals (near-net shape), and the addition of alloying elements reaching a satisfactory structural homogeneity, and porosity. The pore production by space-holder technique constitutes of mixing organic compounds with metal powder, which when removed by thermal treatment prior structures are kept in place. The objective of this study is to obtain porous implants of commercially pure titanium (cpTi) and Ti-13Nb-13Zr alloy by PM with space-holder technique and albumin as an additive. For the processing of the samples were used hydride titanium powder (TiH2) to obtain cpTi samples, and metal powders of Ti, Nb and Zr in the stoichiometric proportions for obtaining the alloy samples. The samples were prepared by mixing the metallic powder to the albumin (30wt%) and filling a silicone model that was pressed isostatically (140 MPa). The thermal treatment was performed in an oxidizing atmosphere (350°C/1h) for the decomposition of organic material. The sintering was performed at a temperature of 1300°C (1h/cpTi, 3h/Alloy) in high vacuum furnace (10-5 mBar) to all samples. The calculated porosity showed a significant difference between the samples cpTi (40%) and alloy (60%). The samples surface characterization showed very rough with high specific surface area. Samples of cpTi presented formation of necks arising from sintering. In the alloy samples were observed homogenous microstructure with the presence of α and β phases composing the Widmanstätten structure. It is possible to conclude that the same amount albumin allowed the formation of pores in the microstructure of cpTi and alloy although in different proportions, without harming the sintering of both and allowing diffusion of the alloy elements.


1998 ◽  
Vol 13 (5) ◽  
pp. 719-730 ◽  
Author(s):  
John O. Milewski ◽  
Dan J. Thoma ◽  
Joe C. Fonseca ◽  
Gary K. Lewis

Sign in / Sign up

Export Citation Format

Share Document