Shear Behavior of Bamboo Reinforced Concrete Beams

Author(s):  
J. Khatib ◽  
Ali Hussein Jahami ◽  
Mohammed Sonebi ◽  
Adel Elkordi

This research work aimed to study the usage of Bamboo strips as shear reinforcement in reinforced concrete (RC) beams. Four beams were considered in this study. The flexural reinforcement for all beams was the same. As for shear reinforcement, one beam was reinforced with conventional shear reinforcement with spacing (s=180 mm), while the other three beams were reinforced with bamboo strips with three different spacings (s=180 mm, s= 90 mm, and s=60 mm). The beams were subjected to a four-point bending test to plot the load-deflection curve for each beam. Results showed that the beam reinforced with bamboo strips spaced at 180 mm has 30% higher shear capacity than the beam with conventional shear reinforcement at the same spacing. Also, as the spacing of bamboo strips decreased, the shear capacity of beams increased nonlinearly.

2019 ◽  
Vol 65 (2) ◽  
pp. 35-55 ◽  
Author(s):  
J. Krassowska ◽  
M. Kosior-Kazberuk

AbstractExperimental tests were carried out to assess the failure model of steel and basalt fiber reinforced concrete two-span beams. Experimental research was focused on observing the changes in behavior of tested elements in dependence on the ratio of shear reinforcement and type of fiber. The beams had varied stirrup spacing. The steel fiber content was 78.5 kg/m3 (1.0% by vol.) and basalt fiber content was 5.0 kg/m3 (0.19% by vol.). Concrete beams without fibers were also examined. Two-span beams with a cross-section of 120×300 mm and a length of 4150 mm were loaded in a five-point bending test. Shear or flexural capacity of tested members was recorded. The effectiveness of both sorts of fibers as shear reinforcement was assessed and the differences were discussed. It was shown that fibers control the cracking process and the values of deflections and strains. Fibers clearly enhance the shear capacity of reinforced concrete beams.


2006 ◽  
Vol 33 (8) ◽  
pp. 933-944 ◽  
Author(s):  
H El Chabib ◽  
M Nehdi ◽  
A Saïd

The exact effect that each of the basic shear design parameters exerts on the shear capacity of reinforced concrete (RC) beams without shear reinforcement (Vc) is still unclear. Previous research on this subject often yielded contradictory results, especially for reinforced high-strength concrete (HSC) beams. Furthermore, by simply adding Vc and the contribution of stirrups Vs to calculate the ultimate shear capacity Vu, current shear design practice assumes that the addition of stirrups does not alter the effect of shear design parameters on Vc. This paper investigates the validity of such a practice. Data on 656 reinforced concrete beams were used to train an artificial neural network model to predict the shear capacity of reinforced concrete beams and evaluate the performance of several existing shear strength calculation procedures. A parametric study revealed that the effect of shear reinforcement on the shear strength of RC beams decreases at a higher reinforcement ratio. It was also observed that the concrete contribution to shear resistance, Vc, in RC beams with shear reinforcement is noticeably larger than that in beams without shear reinforcement, and therefore most current shear design procedures provide conservative predictions for the shear strength of RC beams with shear reinforcement.Key words: analysis, artificial intelligence, beam depth, compressive strength, modeling, shear span, shear strength.


This paper presents a study of shear behaviour of reinforced concrete beams. The major parameters used were type of shear reinforcement, namely stirrups alone, wire mesh alone and combination of both wire mesh and stirrups as shear reinforcement. The replacement of wire mesh was done on the basis of weight with stirrups. The experimental program includes four beams. All the beams were tested using two point loading system. It is evident from the result that the use of wire mesh enhanced improved shear performance and bearing capacity in the examined beams. Beams with wire mesh as shear reinforcement and combination of both wire mesh and stirrups exhibited some amount of increase in shear capacity with respect to the beams with stirrups alone as shear reinforcement. Furthermore beams with wire mesh and combination of wire mesh and stirrups as reinforcement exhibited less number of crack patterns compared beams with stirrups.


2020 ◽  
Author(s):  
◽  
Hoosen Ahmed Jajbhay

Research to accurately predict the shear capacity of reinforced concrete beams without shear reinforcement has been ongoing since the early 20th century. Aggregate interlock of the coarse aggregates at the shear crack interface is one of the internal mechanisms of shear transfer and a major contributor to the shear capacity of slender beams. It is plausible, therefore, to investigate if the coarse aggregate itself influences the shear capacity of a concrete beam. The influence of the type of coarse aggregate on the shear capacity of beams without shear reinforcement was investigated in this study. From the literature study an understanding of the properties of coarse aggregates was gained, the internal mechanisms of shear transfer in reinforced concrete beams without shear reinforcement were determined, and the parameters influencing shear strength were identified. Based on this information an experimental program was designed. Eighteen reinforced concrete beams without shear reinforcement were cast. The beams were cast from three different types of coarse aggregates commonly used in the Durban area, i.e., dolerite, quartzite and tillite. For each type of coarse aggregate two variations were tested, i.e., 13 mm and 19 mm maximum aggregate sizes. For each size of coarse aggregate, three concrete strengths were tested. The beams were loaded in a beam press, by applying an increasing point load offset from midspan to induce cracking on the shorter side, until shear failure of the beam occurred. For the three concrete strengths, beams cast from dolerite had the highest shear capacity while beams cast from tillite had less shear capacity than beams cast from quartzite coarse aggregate. Furthermore, beams cast from 13 mm maximum size coarse aggregate had higher shear capacity than beams cast from 19 mm aggregate. The conclusion may be drawn that the type and size of coarse aggregate does influence the shear strength of a reinforced concrete beam without shear reinforcement.


2020 ◽  
pp. 136943322097478
Author(s):  
Qi Cao ◽  
Jiadong Bao ◽  
Changjun Zhou ◽  
Xianrui Lv

This paper aims to study the flexural behavior of CFRP enclosed reinforced concrete beams with different shear reinforcement. Four-point bending tests were carried out on six concrete beams with different contents of steel fibers (0.5%, 1.0%, and 1.5%) as well as six beams with different stirrup spacing (100 mm, 150 mm, and 300 mm) without fiber. The effect of steel fiber (SF) content as well as stirrup spacing on flexural properties of concrete beams were investigated. Meanwhile, the effect of expansive agent on the properties of specimens was also studied. The data collected in this test include cracking load, ultimate load, mid-span deflection, strain of CFRP (Carbon fiber reinforced polymer), strain of longitudinal steel reinforcement as well as the failure modes. Test results show that both cracking loads and ultimate loads of the SF reinforced beam specimens are generally higher than those of the corresponding stirrup reinforced beam specimens. Experimental results also indicate that the addition of SF can improve the ductility and cracking resistance of specimens. This therefore demonstrates that it is feasible to replace stirrup reinforcement with SF as shear reinforcement. In addition, it exhibits a good agreement between experimental results and analytical predictions in cracking loads and ultimate loads.


2015 ◽  
Vol 1106 ◽  
pp. 49-52
Author(s):  
Martin Tipka ◽  
Jitka Vašková

The paper deals with an investigation of tensile properties of concrete and fibre reinforced concrete using the test in uniaxial tension. This arrangement is technically more difficult compared to the commonly used bending test, but allows easier determination of strength-deformation parameters of material. The advantage of the test is the possibility of direct analysis of the post-peak part of the stress-strain diagram in tension. The article describes the recommended test arrangement and analyzes methodology of loading. Attention is focused on the critical phase of the loading process and subsequent evaluation of results. In the experimental research was compared strength and corresponding strain of specific fibre reinforced concrete, obtained in three-point and four-point bending test, and the uniaxial tension test. The results of this comparative study are presented in the conclusion.


2020 ◽  
Vol 309 ◽  
pp. 57-61
Author(s):  
Jakub Řepka ◽  
Tomáš Vlach ◽  
Diana Mariaková ◽  
Zuzana Jirkalová ◽  
Petr Hájek

This paper discusses the feasibility of an innovative anchoring element which is designed to be integrated into the volume of an ultra-thin coffered façade panel made of textile reinforced concrete and to not increase its external dimensions. The first part of the article describes the composition and shape of the façade panel and focuses on the manufacturing of the composite anchoring element made of carbon technical textile penetrated with polymer matrix which is intentionally identical composition as in the case of the façade panel reinforcement. The second part of the article focuses on the behavior of the composite anchoring element and its effect on its surroundings during the mechanical loading of the façade panel. Specimens of the coffered façade panel with integrated anchoring elements were subjected to four-point bending test to determine the impact of the anchoring elements on the façade panel flexural tensile strength and type of failure. Additional specimens were tested to determine the load-bearing capacity of the anchoring elements.


Sign in / Sign up

Export Citation Format

Share Document