Sedimentation of Substitutional Solute Atoms in Condensed Matter: New Type of Diffusion

2005 ◽  
Vol 237-240 ◽  
pp. 30-37 ◽  
Author(s):  
Tsutomu Mashimo

Ultra-strong gravitational field (Mega-gravity field) causes the sedimentation of even atoms (diffusion), and is expected to create a nonequilibrium crystal-chemical state in multi-component condensed matter. However, the materials science research under mega-gravity field has now remained as an unexploited field, while the sedimentation of molecules or polymer had been used in biochemistory. We presented a self-consistent diffusion equation for sedimentation of atoms in condensed matter. Next, we developed an ultracentrifuge apparatus to generate strong acceleration field of over 1 million (1x106) g at temperature range up to 〜300 °C, and, recently, succeeded in realization of the sedimentation of substitutional solute atoms in some alloys of Bi-Sb, In-Pb, Bi-Pb systems, etc. The diffusion coefficients in sedimentation on Bi-Sb alloy were estimated to be much greater than those at normal conditions by a factor of >20. It is suggested that the sedimentation of substitutional atoms in solids or liquids can be explained in a new type of diffusion, where the diffusion mechanism for substitutional solute atoms was yet unknown. In this article, the recent progress in the investigation of sedimentation of atoms under mega-gravity field is reviewed, and the diffusion mechanism is discussed. The application of the mega-gravity field is also discussed.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1771
Author(s):  
Fei Wang ◽  
Kejiang Liang ◽  
Mads Christian Larsen ◽  
Steffen Bähring ◽  
Masatoshi Ishida ◽  
...  

We report a fully organic pyridine-tetrapyrrolic U-shaped acyclic receptor 10, which prefers a supramolecular pseudo-macrocyclic dimeric structure (10)2 in a less polar, non-coordinating solvent (e.g., CHCl3). Conversely, when it is crystalized from a polar, coordinating solvent (e.g., N,N-dimethylformamide, DMF), it exhibited an infinite supramolecular one-dimensional (1D) “zig-zag” polymeric chain, as inferred from the single-crystal X-ray structures. This supramolecular system acts as a potential receptor for strong acids, e.g., p-toluenesulfonic acid (PTSA), methane sulfonic acid (MSA), H2SO4, HNO3, and HCl, with a prominent colorimetric response from pale yellow to deep red. The receptor can easily be recovered from the organic solution of the host–guest complex by simple aqueous washing. It was observed that relatively stronger acids with pKa < −1.92 in water were able to interact with the receptor, as inferred from 1H NMR titration in tetrahydrofuran-d8 (THF-d8) and ultraviolet–visible (UV–vis) spectroscopic titrations in anhydrous THF at 298 K. Therefore, this new dynamic supramolecular receptor system may have potentiality in materials science research.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthew J. Gilbert

AbstractWithin the broad and deep field of topological materials, there are an ever-increasing number of materials that harbor topological phases. While condensed matter physics continues to probe the exotic physical properties resulting from the existence of topological phases in new materials, there exists a suite of “well-known” topological materials in which the physical properties are well-characterized, such as Bi2Se3 and Bi2Te3. In this context, it is then appropriate to ask if the unique properties of well-explored topological materials may have a role to play in applications that form the basis of a new paradigm in information processing devices and architectures. To accomplish such a transition from physical novelty to application based material, the potential of topological materials must be disseminated beyond the reach of condensed matter to engender interest in diverse areas such as: electrical engineering, materials science, and applied physics. Accordingly, in this review, we assess the state of current electronic device applications and contemplate the future prospects of topological materials from an applied perspective. More specifically, we will review the application of topological materials to the general areas of electronic and magnetic device technologies with the goal of elucidating the potential utility of well-characterized topological materials in future information processing applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. P. Ruf ◽  
H. Paik ◽  
N. J. Schreiber ◽  
H. P. Nair ◽  
L. Miao ◽  
...  

AbstractSuperconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuO2 thin films on (110)-oriented TiO2 substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of d orbitals.


MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1667-1672 ◽  
Author(s):  
Lon A. Porter

ABSTRACTTraditional lecture-centered approaches alone are inadequate for preparing students for the challenges of creative problem solving in the STEM disciplines. As an alternative, learnercentered and other high-impact pedagogies are gaining prominence. The Wabash College 3D Printing and Fabrication Center (3D-PFC) supports several initiatives on campus, but one of the most successful is a computer-aided design (CAD) and fabrication-based undergraduate research internship program. The first cohort of four students participated in an eight-week program during the summer of 2015. A second group of the four students was successfully recruited to participate the following summer. This intensive materials science research experience challenged students to employ digital design and fabrication in the design, testing, and construction of inexpensive scientific instrumentation for use in introductory STEM courses at Wabash College. The student research interns ultimately produced a variety of successful new designs that could be produced for less than $25 per device and successfully detect analytes of interest down to concentrations in the parts per million (ppm) range. These student-produced instruments have enabled innovations in the way introductory instrumental analysis is taught on campus. Beyond summer work, the 3D-PFC staffed student interns during the academic year, where they collaborated on various cross-disciplinary projects with students and faculty from departments such as mathematics, physics, biology, rhetoric, history, classics, and English. Thus far, the student work has led to three campus presentations, four presentations at national professional conferences, and three peer-reviewed publications. The following report highlights initial progress as well as preliminary assessment findings.


2006 ◽  
Vol 112 ◽  
pp. 39-60 ◽  
Author(s):  
A. Szytuła

The work is a review paper concerning application of neutron diffraction methods for condensed matter investigations and for characterizing modern materials, namely for crystal and magnetic structures determination, small-angle scattering, investigations of chemical reactions and some practical applications. It addresses briefly a few of more prominent techniques that are important for materials scientists. In the first part of the work information on the methods and ways of interpretation of obtained results is given. Then the results for some chosen compounds are presented.


2014 ◽  
Vol 2 (24) ◽  
pp. 4710-4726 ◽  
Author(s):  
Shuang Tang ◽  
Mildred S. Dresselhaus

Bismuth antimony (Bi1−xSbx) is one of the most important materials systems for fundamental materials science, condensed matter physics, low temperature thermoelectrics, infrared applications, and beyond.


2002 ◽  
Vol 58 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Yvon Le Page ◽  
Paul W. Saxe ◽  
John R. Rodgers

The timely integration of crystal structure databases, such as CRYSTMET, ICSD etc., with quantum software, like VASP, OresteS, ElectrA etc., allows ab initio cell and structure optimization on existing pure-phase compounds to be performed seamlessly with just a few mouse clicks. Application to the optimization of rough structure models, and possibly new atomic arrangements, is detailed. The ability to reproduce observed cell data can lead to an assessment of the intrinsic plausibility of a structure model, even without a competing model. The accuracy of optimized atom positions is analogous to that from routine powder studies. Recently, the ab initio symmetry-general least-squares extraction of the coefficients of the elastic tensor for pure-phase materials using data from corresponding entries in crystal structure databases was automated. A selection of highly encouraging results is presented, stressing the complementarity of simulation and experiment. Additional physical properties also appear to be computable using existing quantum software under the guidance of an automation scheme designed following the above automation for the elastic tensor. This possibility creates the exciting perspective of mining crystal structure databases for new materials with combinations of physical properties that were never measured before. Crystal structure databases can accordingly be expected to become the cornerstone of materials science research within a very few years, adding immense practical value to the archived structure data.


Sign in / Sign up

Export Citation Format

Share Document