Sedimentation of Impurity Atoms in InSb Semiconductor under a Strong Gravitational Field

2009 ◽  
Vol 289-292 ◽  
pp. 319-322 ◽  
Author(s):  
Yusuke Iguchi ◽  
Masao Ono ◽  
Satoru Okayasu ◽  
Tsutomu Mashimo

An atomic-scale graded structure has been formed by sedimentation of substitutional atoms under an ultra-strong gravitational field of 1 million G level in alloys and compounds. In this study, we investigate the sedimentation of impurity atoms in semiconductor materials under a strong gravitational field. High-temperature ultracentrifuge experiments (0.59×106 G, 400°C, 60 hours) have been performed on an InSb single crystal wafer which surface was coated with Ge by means of Physical Vapor Deposition (PVD). It was observed that the penetration depth of diffused Ge atoms under the gravitational field was several times larger than under terrestrial field at the same temperatures.

2007 ◽  
Vol 101 (11) ◽  
pp. 113502 ◽  
Author(s):  
Xinsheng Huang ◽  
Masao Ono ◽  
Hideto Ueno ◽  
Yusuke Iguchi ◽  
Takeshi Tomita ◽  
...  

2009 ◽  
Vol 289-292 ◽  
pp. 357-360 ◽  
Author(s):  
Tsutomu Mashimo ◽  
Yusuke Iguchi ◽  
Rabaya Bagum ◽  
Tomokazu Sano ◽  
S. Takeda ◽  
...  

A visible four-layers structure with anomalous nano-sturucture was formed from a homogeneous -phase Bi3Pb7 intermetallic compound under a strong gravitational field (1.02x106 G, 130°C, 100 hours). In the 4th layer (lowest-gravity region), pure Bi particles precipitate. In the 2nd 3rd layers, composition graded structures, where Pb content increased along the gravity direction, were formed. It was found that the very broad XRD peak appeared in the 2nd layer, which indicated that an amorphous structure was contained.


2012 ◽  
Vol 323-325 ◽  
pp. 517-522 ◽  
Author(s):  
Tsutomo Mashimo

A strong gravitational field causes the changes in composition and structure through sedimentation or displacement of atoms in multi-component condensed matter. We have developed a high-temperature ultracentrifuge to generate a strong acceleration field of even over 1 million (1x106) G, and, for the first time succeeded in realizing the sedimentation of the constitutive solute atoms and aeven isotope atoms in solids or liquids. The changes in composition and crystalline state of various alloys, polymers, and other substances have been investigated. Recently, we started the experiments on compounds and semiconductors with the aims of new materials synthesis and semiconductor control. The chemical reaction, crystal structure change have been found for metallic compound (Bi3Pb7), or covalent compounds (Y1Ba2Cu3O7-x, TiO2, etc.). The impurity control was also examined in semiconductor. In this article, the recent progress and the future prospects for materials processing are described.


Author(s):  
Nikolay Plusnin

The problem of the synthesis of new type nanomaterials in the form of nanocoatings with subnanometric heterogeneity has been formulated. It has been presented an analysis of influences of physical vapor deposition in ultrahigh vacuum on the process of intermixing a film with a substrate, including the results, which has been obtained under the formation of transition metal – silicon interface. The generalization of the obtained experimental results allowed to develop an approach to the development of new nanocoatings with low-dimensional heterogeneity. The principles of constructing such low-dimensional nanocoatings, their properties and their possible applications are considered. 


2019 ◽  
Vol 2 (2) ◽  
pp. 54
Author(s):  
Nikolay Plusnin

The problem of the synthesis of new type nanomaterials in the form of nano-coatings with sub-nanometric heterogeneity has been formulated. It has been presented an analysis of influences of physical vapor deposition in ultrahigh vacuum on the process of intermixing a film with a substrate, including the results, which has been obtained under the formation of transition metal – silicon interface. The generalization of the obtained experimental results develops an approach to the development of new nano-coatings with low-dimensional heterogeneity. The principles of constructing such low-dimensional nano-coatings, their properties and possible applications are considered. 


Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.


Sign in / Sign up

Export Citation Format

Share Document