Original Methods for Diffusion Measurements in Polycrystalline Thin Films

2012 ◽  
Vol 322 ◽  
pp. 129-150 ◽  
Author(s):  
Alain Portavoce ◽  
Ivan Blum ◽  
Khalid Hoummada ◽  
Dominique Mangelinck ◽  
Lee Chow ◽  
...  

With the development of nanotechnologies, the number of industrial processes dealing with the production of nanostructures or nanoobjects is in constant progress (microelectronics, metallurgy). Thus, knowledge of atom mobility and the understanding of atom redistribution in nanoobjects and during their fabrication have become subjects of increasing importance, since they are key parameters to control nanofabrication. Especially, todays materials can be both composed of nanoobjects as clusters or decorated defects, and contain a large number of interfaces as in nanometer-thick film stacking and buried nanowires or nanoislands. Atom redistribution in this type of materials is quite complex due to the combination of different effects, such as composition and stress, and is still not very well known due to experimental issues. For example, it has been shown that atomic transport in nanocrystalline layers can be several orders of magnitude faster than in microcrystalline layers, though the reason for this mobility increase is still under debate. Effective diffusion in nanocrystalline layers is expected to be highly dependent on interface and grain boundary (GB) diffusion, as well as triple junction diffusion. However, experimental measurements of diffusion coefficients in nanograins, nanograin boundaries, triple junctions, and interfaces, as well as investigations concerning diffusion mechanisms, and defect formation and mobility in these different diffusion paths are today still needed, in order to give a complete picture of nanodiffusion and nanosize effects upon atom transport. In this paper, we present recent studies dealing with diffusion in nanocrystalline materials using original simulations combined with usual 1D composition profile measurements, or using the particular abilities of atom probe tomography (APT) to experimentally characterize interfaces. We present techniques allowing for the simultaneous measurement of grain and GB diffusion coefficients in polycrystals, as well as the measurement of nanograin lattice diffusion and triple junction diffusion. We also show that laser-assisted APT microscopy is the ideal tool to study interface diffusion and nanodiffusion in nanostructures, since it allows the determination of 1D, 2D and 3D atomic distributions that can be analyzed using diffusion analytical solutions or numerical simulation.

2015 ◽  
Vol 363 ◽  
pp. 12-20
Author(s):  
Alain Portavoce ◽  
Khalid Houmada ◽  
Franck Dahlem ◽  
Christophe Girardeaux ◽  
Boubekeur Lalmi

Silicide growth via reaction between a metallic film and a Si substrate has been well documented. In general, atomic transport kinetic during the growth of silicides is considered to be the same as during equilibrium diffusion, despite the reaction and its possible injection of point-defects in the two phases on each side of the interface. To date, the main studies aiming to investigate atomic transport during silicide growth used immobile markers in order to determine which element diffuses the fastest during growth and in which proportion. The quantitative measurements of effective diffusion coefficients during growth was also performed using Deal-and-Groove-type of models, however, these effective coefficients are in general not in agreement with the interdiffusion coefficients calculated using the equilibrium diffusion coefficients measured during diffusion experiments. In general, atomic transport kinetic measurements during growth and without growth are performed using different types of samples for experimental reasons. In this paper, we discuss the possible use of ultrahigh vacuum in situ Auger electron spectroscopy in order to measure the effective diffusion coefficient during growth, as well as the equilibrium self-diffusion coefficients, in the same samples, in the same experimental conditions. The first results on the Pd-Si system show that atomic transport during Pd2Si growth is several orders of magnitude faster than at equilibrium without interfacial reaction.


2012 ◽  
Vol 323-325 ◽  
pp. 3-10
Author(s):  
Guido Schmitz ◽  
Dietmar Baither ◽  
Zoltán Balogh ◽  
Mohammed Reda Chellali ◽  
Gerd Hendrik Greiwe ◽  
...  

Nanoscale systems show a wide variety of physical properties that cannot be observed in the bulk. Using atom probe tomography, it is possible to study nanostructured materials with almost atomic resolution in all three dimensions. In this article, we will present a short review of the latest atom-probe measurements carried out at University of Münster with particular focus on diffusion and segregation measurements in triple junctions and interface analysis.


2006 ◽  
Vol 522-523 ◽  
pp. 37-44 ◽  
Author(s):  
Mitsutoshi Ueda ◽  
Kenichi Kawamura ◽  
Toshio Maruyama

Estimation of void formation in oxide scale is important for predicting exfoliation of the oxide scale. Void formation in magnetite scale formed on iron at 823 K has been elucidated by chemical potential distribution, flux of oxide ion and its divergence. This calculation also estimates a effective diffusion coefficient, which includes both lattice diffusion and grain boundary diffusion in magnetite scale. The resulting effective diffusion coefficients give the quantitative elucidation of the morphology of the magnetite scale. The divergence of oxide ion explains well a position and an amount of void in magnetite scale.


2007 ◽  
Vol 263 ◽  
pp. 189-194
Author(s):  
Ivo Stloukal ◽  
Jiří Čermák

Coefficient of 65Zn heterodiffusion in Mg17Al12 intermetallic and in eutectic alloy Mg - 33.4 wt. % Al was measured in the temperature region 598 – 698 K using serial sectioning and residual activity methods. Diffusion coefficient of 65Zn in the intermetallic can be written as DI = 1.7 × 10-2 m2 s-1 exp (-155.0 kJ mol-1 / RT). At temperatures T ≥ 648 K, where the mean diffusion path was greater than the mean interlamellar distance in the eutectic, the effective diffusion coefficient Def = 2.7 × 10-2 m2 s-1 exp (-155.1 kJ mol-1 / RT) was evaluated. At two lower temperatures, the diffusion coefficients 65Zn in interphase boundaries were estimated: Db (623 K) = 1.6 × 10-12 m2 s-1 and Db (598 K) = 4.4 × 10-13 m2 s-1.


2017 ◽  
Vol 23 (2) ◽  
pp. 366-375 ◽  
Author(s):  
Jonathan M. Hyde ◽  
Gérald DaCosta ◽  
Constantinos Hatzoglou ◽  
Hannah Weekes ◽  
Bertrand Radiguet ◽  
...  

AbstractIrradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.


2009 ◽  
Vol 283-286 ◽  
pp. 155-160
Author(s):  
Ivo Stloukal ◽  
Jiří Čermák

Self-diffusion of 110mAg has been investigated in fiber reinforced QE22 magnesium alloy matrix composite. Short Saffil fibers (97% -Al2O3 + 3% SiO2) were used as reinforcement. The diffusion measurements were carried out in the temperature interval 648 – 728 K by serial sectioning method. The volume diffusion coefficients Dv (alloy without reinforcement) and the effective diffusion coefficients Deff (alloy with reinforcement) were obtained by analysis of the penetration curves. The silver diffusion coefficient in the interface boundary matrix/Saffil Di was also estimated. The temperature dependence of volume diffusion coefficients Dv was compared with previous data measured using 65Zn in the same alloy and with literature data for Zn impurity diffusion in Mg single crystal. It was observed, that the temperature dependence of both Deff and Di was significantly non-linear in the measured temperature interval. This behavior supports previous observations with zinc diffusion in the same alloy.


Sign in / Sign up

Export Citation Format

Share Document