Effect of Salt Bath Composition on the Chromium Diffusion on Plain Carbon Steels by TRD Process

2012 ◽  
Vol 326-328 ◽  
pp. 377-382 ◽  
Author(s):  
A. Ghadi ◽  
Mansour Soltanieh ◽  
H.R. Karimi Zarchi

The thermo-reactive diffusion (TRD) process is used for diffusing an element to the metallic steel substrate. TRD is carried out by using either salt bath or fluidized bed methods. In this research, the molten salt bath method is used. Ferro chromium was dissolved in the molten borax as the source of chromium in the salt. Samples of cylindrical shape of plain carbon steel with 10 mm diameter and 20 mm height were treated at 1000°C for 14 hours in different baths including either low carbon ferro chromium (LCFC) or high carbon ferro chromium (HCFC) powder. The purpose of this research is to investigate the effect of the salt bath composition on the diffusion of chromium and formation of chromium compound layer on plain carbon steel by using the salt bath method. The coating thickness layers were measured by SEM. The different phases formed on the samples, due to different amounts of carbon in treating salt bath, were determined by X-ray diffraction. It was found that in molten borax salt with high carbon content (high carbon ferro chromium) very few amount of chromium diffused into the plain carbon steel. The thickness of the diffused chromium layer in low and high carbon content ferro chromium in molten borax, is around 32±8 µm and 6.8±1.2 µm, respectively. A number of tests were conducted to address this effect.

Alloy Digest ◽  
2003 ◽  
Vol 52 (12) ◽  

Abstract Algoma AR225 is a carbon steel developed primarily to supply a low-cost material for high-abrasion applications. It is furnished in the form of as-rolled plate with a relatively high carbon content (0.35-0.45%). AR-225 is sold on the basis of chemical analysis only; the number 225 signifies the approximate Brinell hardness. On thicknesses one-half inch and over, this Brinell value may be lower than 225 because of higher finishing temperatures. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: CS-138. Producer or source: Algoma Steel Corporation Ltd.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract UNS No. G10780 is a plain carbon steel; it has low hardenability and a high carbon content (nominally 0.78%). It can be hardened by quenching into oil or water from the austenitizing temperature; care must be exercised to prevent cracking when quenching into water. This steel develops high surface hardness and a soft core on quenching and tempering lightly. It has good wear resistance. Its many uses include agricultural equipment, tools, springs, and machinery parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: CS-105. Producer or source: Carbon steel mills.


2011 ◽  
Vol 172-174 ◽  
pp. 61-66 ◽  
Author(s):  
Albin Stormvinter ◽  
Annika Borgenstam ◽  
Peter Hedström

Martensite in carbon steels forms in different morphologies, often referred to as lath andplate martensite. The alloy composition has a strong effect on the morphology, for instance in car-bon steels there is a morphological change of the martensite microstructure from lath martensite atlow carbon contents to plate martensite at high carbon contents. In the present work a decarburizedhigh-carbon steel, enabling the isolation of carbons' influence alone, has been studied in order to in-vestigate the changes in morphology and hardness. From the results it is concluded that there is acontinuous change of hardness with increased carbon content. The increasing hardness slows down atabout 0.6 wt%C before decreasing at higher carbon contents. This is in accordance with the change inmorphology since it was found that lath martensite dominates below 0.6 wt%C and the first units ofgrain boundary martensite and plate martensite appear above 0.6 wt%C. At high carbon contents thedominating morphology is plate martensite, but retained austenite is also present.


2021 ◽  
Vol 4 (3(60)) ◽  
pp. 14-17
Author(s):  
Volodymyr Pashynskyi ◽  
Igor Boyko

The object of research is the effect of the carbon-forming component of coated electrodes for welding and surfacing of Gadfield steel (110G13L and analogs) on the structure and properties of the weld. One of the most problematic areas in the welding and surfacing of high-carbon steel is the high irregularity of the rod and coating melting rates. Therefore, the non-melted part of the coating is literally poured into the weld pool, which leads to significant chemical and structural inhomogeneity of the welded metal. The main hypothesis of the study is the assumption that it is possible to increase the homogeneity of the deposited metal by changing the conditions for the transition of carbon from the electrode to the weld pool by using an electrode rod made of carbon steel. In the course of the study, electrode rods with different carbon contents were used. With an increase in the carbon content in the composition of the electrode rod, the fluidity of the drops increased, which contributed to a decrease in the strength of the welding current without harm to the welding and technological characteristics. This allows to reduce the generation of heat in the base metal, that is an effective measure to prevent hot cracks in the weld metal and heat affected zone Studies of the composition of the electrode metal droplets and the weld material showed that with an increase in the carbon content in the electrode rod from 0.08 % to 0.8 %, the carbon content in the droplets increases from 0.3 % to 0.97 %. The carbon content in the weld metal is 1.1 %. The assimilation of manganese by a drop increases with an increasing of coating and the droplet interaction time. A significant increasing in the rate of coating melting was obtained. This is due to the fact that the concomitant decrease in the content of graphite in the coating contributes to a decrease in the refractoriness of the electrode coating. The use of high carbon steels for the manufacturing of electrode rods for welding and surfacing of Gadfield steel improves the properties of the welded metal and sanitary and hygienic parameters.


2006 ◽  
Vol 530-531 ◽  
pp. 328-333 ◽  
Author(s):  
M.A. Martinez ◽  
J. Abenojar ◽  
J.M. Mota ◽  
R. Calabrés

The objective of the present work is to study the manufacturing process of steels with high carbon content (1.5–2.1wt%) obtained by powder metallurgy. The reference material was the Damascus steel, which was employed to manufacture swords named after it and has been widely known due to its very good mechanical properties. The main reasons of the success of this product are: the high carbon content of the initial steel and the thermomechanical treatment (forge and quenching) that ancient iron forgers kept secretly during centuries. Different carbon contents (2 to3 wt%) were added to the same Fe powder matrix (ASC 300), and compacted and sintered steels are heat laminated (750°C) with a reduction of 20%. For 2% carbon content, the result is a steel with yield strength of 450 MPa, Young’s Modulus of 14.3 GPa and hardness of 109 HV(30).


2020 ◽  
Author(s):  
André V. B. Andrade ◽  
Luiz F. Belchior Ribeiro ◽  
Emanoelle Diz Acosta ◽  
Fernando J. Da Costa ◽  
Maíra D. Mallmann ◽  
...  

1987 ◽  
Vol 104 ◽  
Author(s):  
S. Hahn ◽  
M. Arst ◽  
K. N. Ritz ◽  
S. Shatas ◽  
H. J. Stein ◽  
...  

ABSTRACTEffects of high carbon concentration upon oxygen precipitate formation in Cz silicon have been investigated by combining various furnace and rapid thermal annneals. Even though oxide precipitate density increases with increasing carbon levels, Cs, synchrotron radiation section topographs of processed high carbon content wafers (Cs ∼ 4ppma) exhibit Pendellosung fringes, indicating a strain free bulk state. Our optical microscopic data have also shown very few defect etch features inside the bulk. A model based upon a direct coupling of both SiO2 and Si-C complex formation reactions is used to explain rather unique oxygen precipitation characteristics in the high carbon content Cz Si materials.


2017 ◽  
Vol 740 ◽  
pp. 93-99
Author(s):  
Muhammad Hafizuddin Jumadin ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Siti Khadijah Alias ◽  
Samsiah Ahmad

Increase of soaking time contributed to the effectiveness of case depth formation, hardness properties and carbon content of carburized steel. This paper investigates the effect of different soaking time (7-9 hours) using powder and paste compound to the carburized steel. Low carbon steels were carburized using powder and paste compound for 7, 8 and 9 hours at temperature 1000°C. The transformation of microstructure and formation carbon rich layer was observed under microscope. The microhardness profiles were analyzed to investigate the length of case depth produced after the carburizing process. The increment of carbon content was considered to find the correlation between types of carburizing compound with time. Results shows that the longer carburized steel was soaked, the higher potential in formation of carbon rich layer, case depth and carbon content, which led to better hardness properties for carburized low carbon steel. Longer soaking time, 9 hours has a higher dispersion of carbon up to 41%-51% compare to 8 hours and 7 hours. By using paste carburizing, it has more potential of carbon atom to merge the microstructure to transform into cementite (1.53 wt% C) compare to powder (0.97 wt% C), which increases the hardness of carburized steel (13% higher).


Sign in / Sign up

Export Citation Format

Share Document