Exact Solutions on Mixed Convection Flow of Accelerated Non-Coaxial Rotation of MHD Viscous Fluid with Porosity Effect

2020 ◽  
Vol 399 ◽  
pp. 26-37
Author(s):  
Ahmad Qushairi Mohamad ◽  
Zulkhibri Ismail ◽  
Nur Fatihah Mod Omar ◽  
Muhammad Qasim ◽  
Muhamad Najib Zakaria ◽  
...  

Mixed convection of unsteady non-coaxial rotation flow of viscous fluid over an accelerated vertical disk is investigated. The motion in the fluid is induced due to the rotating and buoyancy force effects. The problem is formulated and extended in terms of coupled partial differential equations with some physical boundary and initial conditions. The non-dimensional equations of the problem are obtained by using the suitable non-dimensional variables. The exact solutions of non-coaxial velocity and temperature profiles are obtained by using Laplace transform method which are satisfying all the initial and boundary conditions. The physical significance of the mathematical results is shown in various plots and is discussed for Grashof and Prandtl numbers as well as magnetic, porosity and accelerated parameters. It is found that, the velocity with the effect of acceleration is higher compared to constant velocity. In limiting sense, the present solutions are found identical with published results.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Khalid ◽  
Ilyas Khan ◽  
Sharidan Shafie

The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.


2015 ◽  
Vol 362 ◽  
pp. 100-107 ◽  
Author(s):  
Z. Ismail ◽  
I. Khan ◽  
A.Q. Mohamad ◽  
S. Shafie

Rotating effects and magnetohydrodynamic (MHD) free convection flow of second grade fluids in a porous medium is considered in this paper. It is assumed that the bounding infinite inclined plate has ramped wall temperature with the presence of heat and mass diffusion. Based on Boussinesq approximation, the analytical expressions for dimensionless velocity, temperature and concentration are obtained by using the Laplace transform method. All the derived solutions satisfying the involved differential equations with imposed boundary and initial conditions. The influence of various parameters on the velocity has been analyzed in graphs and discussed.


2000 ◽  
Vol 422 ◽  
pp. 141-166 ◽  
Author(s):  
YI-CHUNG SU ◽  
JACOB N. CHUNG

A comprehensive numerical study on the linear stability of mixed-convection flow in a vertical pipe with constant heat flux is presented with particular emphasis on the instability mechanism and the Prandtl number effect. Three Prandtl numbers representative of different regimes in the Prandtl number spectrum are employed to simulate the stability characteristics of liquid mercury, water and oil. The results suggest that mixed-convection flow in a vertical pipe can become unstable at low Reynolds number and Rayleigh numbers irrespective of the Prandtl number, in contrast to the isothermal case. For water, the calculation predicts critical Rayleigh numbers of 80 and −120 for assisted and opposed flows, which agree very well with experimental values of Rac = 76 and −118 (Scheele & Hanratty 1962). It is found that the first azimuthal mode is always the most unstable, which also agrees with the experimental observation that the unstable pattern is a double spiral flow. Scheele & Hanratty's speculation that the instability in assisted and opposed flows can be attributed to the appearance of inflection points and separation is true only for fluids with O(1) Prandtl number. Our study on the effect of the Prandtl number discloses that it plays an active role in buoyancy-assisted flow and is an indication of the viability of kinematic or thermal disturbances. It profoundly affects the stability of assisted flow and changes the instability mechanism as well. For assisted flow with Prandtl numbers less than 0.3, the thermal–shear instability is dominant. With Prandtl numbers higher than 0.3, the assisted-thermal–buoyant instability becomes responsible. In buoyancy-opposed flow, the effect of the Prandtl number is less significant since the flow is unstably stratified. There are three distinct instability mechanisms at work independent of the Prandtl number. The Rayleigh–Taylor instability is operative when the Reynolds number is extremely low. The opposed-thermal–buoyant instability takes over when the Reynolds number becomes higher. A still higher Reynolds number eventually leads the thermal–shear instability to dominate. While the thermal–buoyant instability is present in both assisted and opposed flows, the mechanism by which it destabilizes the flow is completely different.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Chi-Min Liu

A shear flow motivated by relatively moving half-planes is theoretically studied in this paper. Either the mass influx or the mass efflux is allowed on the boundary. This flow is called the extended Stokes' problems. Traditionally, exact solutions to the Stokes' problems can be readily obtained by directly applying the integral transforms to the momentum equation and the associated boundary and initial conditions. However, it fails to solve the extended Stokes' problems by using the integral-transform method only. The reason for this difficulty is that the inverse transform cannot be reduced to a simpler form. To this end, several crucial mathematical techniques have to be involved together with the integral transforms to acquire the exact solutions. Moreover, new dimensionless parameters are defined to describe the flow phenomena more clearly. On the basis of the exact solutions derived in this paper, it is found that the mass influx on the boundary hastens the development of the flow, and the mass efflux retards the energy transferred from the plate to the far-field fluid.


2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Ndolane Sene

In this paper, we consider a natural convection flow of an incompressible viscous fluid subject to Newtonian heating and constant mass diffusion. The proposed model has been described by the Caputo fractional operator. The used derivative is compatible with physical initial and boundaries conditions. The exact analytical solutions of the proposed model have been provided using the Laplace transform method. The obtained solutions are expressed using some special functions as the Gaussian error function, Mittag–Leffler function, Wright function, and G -function. The influences of the order of the fractional operator, parameters used in modeling the considered fluid, Nusselt number, and Sherwood number have been analyzed and discussed. The physical interpretations of the influences of the parameters of our fluid model have been presented and analyzed as well. We use the graphical representations of the exact solutions of the model to support the findings of the paper.


Sign in / Sign up

Export Citation Format

Share Document