Microstructural Characterization of Ledeburitic Tool Steel after Sub-Zero Treatment and Tempering

2020 ◽  
Vol 403 ◽  
pp. 103-109
Author(s):  
Jana Ptačinová ◽  
Juraj Ďurica ◽  
Matej Pašák ◽  
Martin Kusy ◽  
Peter Jurči

Microstructural characterization of ledeburitic tool steel Vanadis 6 after sub-zero treatment and tempering has been examined. The samples were heat treated using following schedules: heating to the austenitizing temperature (TA = 1050 °C) in a vacuum furnace, hold at the final temperature for 30 min. and nitrogen gas quenching (5 bar). The sub-zero treatments consisted of immediate (after quenching) immersion of the material into the liquid helium (-269 °C), hold at the soaking temperature and removal the samples to be heated to a room temperature. Double tempering has been performed at the temperatures from the range 170 – 530 °C, whereas each tempering cycle was realized with a hold of 2 h. Typical heat treated microstructure of ledeburitic steels consists, besides of the martensitic matrix with certain amount of retained austenite, of several types of carbides – eutectic, secondary and small globular carbides. In sub-zero treated steel the amount of retained austenite is significantly reduced. The population density of small globular carbides increase as a result of sub-zero treating. Tempering of the material resulted in decrease in population density of small globular carbides with increasing the tempering temperature. The hardness of sub-zero treated material is higher than that of conventionally quenched one. Also, this tendency is preserved when the steel is low-temperature tempered. On the other hand, the hardness of conventionally quenched steel becomes higher than that of SZT one when tempered at the temperature of secondary hardening.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3759
Author(s):  
Peter Jurči ◽  
Aneta Bartkowska ◽  
Mária Hudáková ◽  
Mária Dománková ◽  
Mária Čaplovičová ◽  
...  

Sub-zero treatment of Vanadis 6 steel resulted in a considerable reduction of retained austenite amount, refinement of martensite, enhancement of population density of carbides, and modification of precipitation behaviour. Tempering of sub-zero-treated steel led to a decrease in population density of carbides, to a further reduction of retained austenite, and to precipitation of M3C carbides, while M7C3 carbides precipitated only in the case of conventionally quenched steel. Complementary effects of these microstructural variations resulted in more noble behaviour of sub-zero-treated steel compared to the conventionally room-quenched one, and to clear inhibition of the corrosion rate at the same time.


2015 ◽  
Vol 60 (2) ◽  
pp. 1331-1334 ◽  
Author(s):  
M.C. Oh ◽  
H. Yeom ◽  
Y. Jeon ◽  
B. Ahn

Abstract The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.


2021 ◽  
Vol 7 (8) ◽  
pp. 79609-79619
Author(s):  
Anael Preman Krelling ◽  
Bruna de Freitas Zappelino ◽  
Jefferson Luis Jerônimo ◽  
Ivandro Bonetti ◽  
Alexcier Krawczuk Capitani ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 862 ◽  
Author(s):  
Maribel Arribas ◽  
Teresa Gutiérrez ◽  
Eider Del Molino ◽  
Artem Arlazarov ◽  
Irene De Diego-Calderón ◽  
...  

In this work, four low carbon steels with different contents of Mn and Ni were heat treated by quenching and partitioning (Q&P) cycles where high partitioning temperatures, in the range of 550 °C–650 °C, were applied. In order to elucidate the effect of applying these high partitioning temperatures with respect to more common Q&P cycles, the materials were also heat treated considering a partitioning temperature of 400 °C. The microstructure evolution during the Q&P cycles was studied by means of dilatometry tests. The microstructural characterization of the treated materials revealed that austenite retention strongly depended on the alloy content and partitioning conditions. It was shown that the occurrence of austenite reverse transformation (ART) in the partitioning stage in some of the alloys and conditions was a very effective mechanism to increase the austenite content in the final microstructure. However, the enhancement of tensile properties achieved by the application of high partitioning temperature cycles was not significant.


Author(s):  
C. Triveño Rios ◽  
S.F. Santos ◽  
Walter José Botta Filho ◽  
Claudemiro Bolfarini ◽  
Claudio Shyinti Kiminami

2018 ◽  
Vol 767 ◽  
pp. 196-203 ◽  
Author(s):  
Božo Skela ◽  
Marko Sedlaček ◽  
Bojan Podgornik

Good mechanical and wear properties of hot-work tool steels are needed for tools to withstand severe service conditions during their operational lifetime. Thus, the aim of this investigation was to correlate mechanical and wear properties with changes in microstructure of commercially available hot work tool steel Sitherm S361R. Hardness, impact toughness, tensile strength and wear tests were performed. Hot-work tool steel was heat treated at austenitizing temperature 1030 °C for 15 min in a horizontal vacuum furnace and gas quenched using nitrogen. One set of samples was investigated in as quenched state. Double tempering of samples was performed after quenching for 2 h at each of chosen temperatures, with first tempering temperature of 500 °C for the whole set of tempered samples. The second tempering was conducted at temperatures from 520 °C to 640 °C with increment of 30 °C for each set of samples. Microstructure of differently heat treated samples showed martensitic matrix, but different fraction and distribution of carbides, consequently influencing hardness, impact toughness, tensile strength, yield strength and wear resistance. Reciprocating sliding wear tests were carried out at room temperature in order to correlate microstructure of differently heat treated hot-work tool steel with wear. In order to achieve adhesive and abrasive wear mechanisms, 100Cr6 and Al2O3 balls were used as counter-body, respectively. Combination of adhesive and abrasive wear was observed for all specimens with different hardness when using 100Cr6 material as a counter body. However, in the case of Al2O3 abrasive wear was found as the prevailing wear mechanism.


2017 ◽  
Author(s):  
M. P. Gomes ◽  
I. P. Santos ◽  
C. P. Couto ◽  
E. G. Betini ◽  
M. A. Colosio ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 627 ◽  
Author(s):  
Alejandro Gonzalez-Pociño ◽  
Florentino Alvarez-Antolin ◽  
Juan Asensio-Lozano

Vanadis 10 steel is a powder metallurgy processed tool steel. The aim of the present study is to analyze the microstructural variation in this steel that takes place when the process variables related to the heat treatments of quenching and tempering are modified. Specifically, the destabilization of austenite, the precipitation of secondary carbides and the amount of retained austenite were analyzed. The research methodology employed was a Design of Experiments (DoE). The percentage and types of precipitated crystalline phases were determined by XRD, while the microstructure was revealed by means of SEM-energy-dispersive X-ray spectroscopy (EDX). The destabilization of austenite was favored by tempering at 600 °C for at least 4 h. These same conditions stimulated the removal of the retained austenite and the precipitation of M7C3 secondary carbides. For the precipitation of MC secondary carbides, it was necessary to maintain the steel at a temperature of 1100 °C for at least 8 h. The highest hardness values were obtained when the tempering temperature was lower (500 °C). Tempering in air or oil did not have a significant influence on the hardness of the steel after double or triple tempering at 500 or 600 °C. These results allow the manufacturers of industrial tools and components that use this type of steel in the annealed state as a material to define the most suitable quenching and tempering heat treatment to optimize the in-service behavior of these steels.


Sign in / Sign up

Export Citation Format

Share Document