Prandtl and Richardson Number Effects on Mixed Convection in a Vented Enclosure on Application to the Cooling of the Fins

2021 ◽  
Vol 406 ◽  
pp. 78-86
Author(s):  
Mohamed Chaour ◽  
Saadoun Boudebous

In the present study, a numerical investigate the transport mechanism of laminar mixed convection in a vented enclosure. The walls of the cavity were kept adiabatic except the right vertical wall which was equipped with three fins dissipating the heat at a constant temperature. The equations of considered phenomenon were established and discretized by the finite difference method. The sweeping method line-by-line and the Thomas Algorithm (TDMA) were used for the resolution of the system of discretized equations. The results obtained showed that both the variations of the Prandtl and Richardson number have important effects on the flow structure and on the heat transfer.

2018 ◽  
Vol 388 ◽  
pp. 407-419
Author(s):  
Fatih Selimefendigil ◽  
Ali Jawad Chamkha

This study numerically investigates the mixed convection of ferrofluids in a partially heated lid driven square enclosure. The heater is located to the left vertical wall and the right vertical wall is kept at constant lower temperature while other walls of the cavity are assumed to be adiabatic. The governing equations are solved with Galerkin weighted residual finite element method. The influence of the Richardson number (between 0.01 and 100), heater location (between 0.25 H and 0.75H), strength of the magnetic dipole (between 0 and 4), and horizontal location of the magnetic dipole source (between-2H and-0.5H) on the fluid flow and heat transfer are numerically investigated. It is found that local and averaged heat transfer deteriorates with increasing values of Richardson number and magnetic dipole strength. The flow field and thermal characteristics are sensitive to the magnetic dipole source strength and its position and heater location.


Author(s):  
Abderrahim Bourouis ◽  
Abdeslam Omara ◽  
Said Abboudi

Purpose – The purpose of this paper is to provide a numerical study of conjugate heat transfer by mixed convection and conduction in a lid-driven enclosure with thick vertical porous layer. The effect of the relevant parameters: Richardson number (Ri=0.1, 1, 10) and thermal conductivity ratio (Rk=0.1, 1, 10, 100) are investigated. Design/methodology/approach – The studied system is a two dimensional lid-driven enclosure with thick vertical porous layer. The left vertical wall of the enclosure is allowed to move in its own plane at a constant velocity. The enclosure is heated from the right vertical wall isothermally. The left and the right vertical walls are isothermal but temperature of the outside of the right vertical wall is higher than that of the left vertical wall. Horizontal walls are insulated. The governing equations are solved by finite volume method and the SIMPLE algorithm. Findings – From the finding results, it is observed that: for the two studied cases, heat transfer rate along the hot wall is a decreasing function of thermal conductivity ratio irrespective of Richardson numbers contrary to the heat transfer rate along the fluid-porous layer interface which is an increasing function of thermal conductivity ratio. At forced convection dominant regime, the difference between heat transfer rate for upward and downward moving wall is insensitive to the thermal conductivity ratio. For downward moving wall, average Nusselt number is higher than that of upward moving wall. Practical implications – Some applications: building applications, furnace design, nuclear reactors, air solar collectors. Originality/value – From the bibliographic work and the authors’ knowledge, the conjugate mixed convection in lid-driven partially porous enclosures has not yet been investigated which motivates the present work that represent a continuation of the preceding investigations.


Author(s):  
O. Manca ◽  
S. Nardini ◽  
D. Ricci ◽  
S. Tamburrino

Heat transfer enhancement technology covers a very important role in designing efficient heating and cooling equipments. This goal can be achieved by means of different techniques. Convective heat transfer can be improved actively or passively, for example, by adopting special surfaces or by increasing the thermal conductivity of the working fluids. Thus, the use of suspended solid nanoparticles in the working fluids can be taken into account. In this paper a numerical investigation on laminar mixed convection with Al2O3/water based nanofluids in a triangular channel is presented. A uniform and constant heat flux on the channel surfaces is assumed and the single-phase model approach has been employed in order to describe the nanofluid behaviour. The analysis has been performed in the steady state regime for particle size in nanofluids equal to 30 nm. The CFD code Fluent has been employed in order to solve the three-dimensional numerical model and different Richardson number values and nanoparticle volume fractions have been considered. Results are presented for the fully developed regime flow. The increase of average convective heat transfer coefficients and Nusselt number values for increasing values of Richardson number and particle concentration is observed by analyzing the obtained results. However, also wall shear stress and required pumping power profiles increase as expected.


2022 ◽  
Vol 27 ◽  
pp. 1-23
Author(s):  
Rujda Parveen ◽  
Tapas Ray Mahapatra

This paper examines the two-dimensional laminar steady magnetohydrodynamic doublediffusive mixed convection in a curved enclosure filled with different types of nanofluids. The enclosure is differentially heated and concentrated, and the heat and mass source are embedded in a part of the left wall having temperature Th (>Tc) and concentration ch (>cc). The right vertical wall is allowed to move with constant velocity in a vertically upward direction to cause a shear-driven flow. The governing equations along with the boundary conditions are transformed into a nondimensional form and are written in stream function-velocity formulation, which is then solved numerically using the Bi-CGStab method. Based on the numerical results, the effects of the dominant parameters such as Richardson number (1 ≤ Ri ≤ 50), Hartmann number (0 ≤ Ha ≤ 60), solid volume fraction of nanoparticles (0.0 ≤ ϕ ≤ 0.02), location and length of the heat and mass source are examined. Results indicate that the augmentation of Richardson number, heat and mass source length and location cause heat and mass transfer to increase, while it decreases when Hartmann number and volume fraction of the nanoparticles increase. The total entropy generation rises by 1.32 times with the growing Richardson number, decreases by 1.21 times and 1.02 times with the rise in Hartmann number and nanoparticles volume fraction, respectively.


Author(s):  
Akand W. Islam ◽  
Muhammad A. R. Sharif ◽  
Eric S. Carlson

Laminar mixed convection characteristics in a square cavity with an isothermally heated square blockage inside have been investigated numerically using the finite volume method of the ANSYS FLUENT commercial CFD code. Various different blockage sizes and concentric and eccentric placement of the blockage inside the cavity have been considered. The blockage is maintained at a hot temperature, Th, and four surfaces of the cavity (including the lid) are maintained at a cold temperature, Tc, under all circumstances. The physical problem is represented mathematically by sets of governing conservation equations of mass, momentum, and energy. The geometrical and flow parameters for the problem are the blockage ratio (B), the blockage placement eccentricities (εx and εy), the Reynolds number (Re), the Grashof number (Gr), and the Richardson number (Ri). The flow and heat transfer behavior in the cavity for a range of Richardson number (0.01–100) at a fixed Reynolds number (100) and Prandtl number (0.71) is examined comprehensively. The variations of the average and local Nusselt number at the blockage surface at various Richardson numbers for different blockage sizes and placement eccentricities are presented. From the analysis of the mixed convection process, it is found that for any size of the blockage placed anywhere in the cavity, the average Nusselt number does not change significantly with increasing Richardson number until it approaches the value of the order of 1 beyond which the average Nusselt number increases rapidly with the Richardson number. For the central placement of the blockage at any fixed Richardson number, the average Nusselt number decreases with increasing blockage ratio and reaches a minimum at around a blockage ratio of slightly larger than 1/2. For further increase of the blockage ratio, the average Nusselt number increases again and becomes independent of the Richardson number. The most preferable heat transfer (based on the average Nusselt number) is obtained when the blockage is placed around the top left and the bottom right corners of the cavity.


2020 ◽  
Vol 45 (4) ◽  
pp. 373-383
Author(s):  
Nepal Chandra Roy ◽  
Sadia Siddiqa

AbstractA mathematical model for mixed convection flow of a nanofluid along a vertical wavy surface has been studied. Numerical results reveal the effects of the volume fraction of nanoparticles, the axial distribution, the Richardson number, and the amplitude/wavelength ratio on the heat transfer of Al2O3-water nanofluid. By increasing the volume fraction of nanoparticles, the local Nusselt number and the thermal boundary layer increases significantly. In case of \mathrm{Ri}=1.0, the inclusion of 2 % and 5 % nanoparticles in the pure fluid augments the local Nusselt number, measured at the axial position 6.0, by 6.6 % and 16.3 % for a flat plate and by 5.9 % and 14.5 %, and 5.4 % and 13.3 % for the wavy surfaces with an amplitude/wavelength ratio of 0.1 and 0.2, respectively. However, when the Richardson number is increased, the local Nusselt number is found to increase but the thermal boundary layer decreases. For small values of the amplitude/wavelength ratio, the two harmonics pattern of the energy field cannot be detected by the local Nusselt number curve, however the isotherms clearly demonstrate this characteristic. The pressure leads to the first harmonic, and the buoyancy, diffusion, and inertia forces produce the second harmonic.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1150 ◽  
Author(s):  
Taher Armaghani ◽  
Muneer Ismael ◽  
Ali Chamkha ◽  
Ioan Pop

This paper investigates the mixed convection and entropy generation of an Ag-water nanofluid in an L-shaped channel fixed at an inclination angle of 30° to the horizontal axis. An isothermal heat source was positioned in the middle of the right inclined wall of the channel while the other walls were kept adiabatic. The finite volume method was used for solving the problem’s governing equations. The numerical results were obtained for a range of pertinent parameters: Reynolds number, Richardson number, aspect ratio, and the nanoparticles volume fraction. These results were Re = 50–200; Ri = 0.1, 1, 10; AR = 0.5–0.8; and φ = 0.0–0.06, respectively. The results showed that both the Reynolds and the Richardson numbers enhanced the mean Nusselt number and minimized the rate of entropy generation. It was also found that when AR. increased, the mean Nusselt number was enhanced, and the rate of entropy generation decreased. The nanoparticles volume fraction was predicted to contribute to increasing both the mean Nusselt number and the rate of entropy generation.


2018 ◽  
Vol 389 ◽  
pp. 164-175
Author(s):  
Houssem Laidoudi ◽  
Bilal Blissag ◽  
Mohamed Bouzit

In this paper, the numerical simulations of laminar mixed convection heat transfer from row of three isothermal square cylinders placed in side-by-side arrangement are carried out to understand the behavior of fluid flow around those cylinders under gradual effect of thermal buoyancy and its effect on the evacuation of heat energy. The numerical results are presented and discussed for the range of these conditions: Re = 10 to 40, Ri = 0 to 2 at fixed value of Prandtl number of Pr = 1 and at fixed geometrical configuration. In order to analyze the effect of thermal buoyancy on fluid flow and heat transfer characteristics the main results are illustrated in terms of streamline and isotherm contours. The total drag coefficient as well as average Nusselt number of each cylinder are also computed to determine exactly the effect of buoyancy strength on hydrodynamic force and heat transfer evacuation of each cylinder.


2019 ◽  
Vol 30 (5) ◽  
pp. 2781-2807
Author(s):  
Davood Toghraie ◽  
Ehsan Shirani

Purpose The purpose of this paper is to investigate the mixed convection of a two-phase water–aluminum oxide nanofluid in a cavity under a uniform magnetic field. Design/methodology/approach The upper wall of the cavity is cold and the lower wall is warm. The effects of different values of Richardson number, Hartmann number, cavitation length and solid nanoparticles concentration on the flow and temperature field and heat transfer rate were evaluated. In this paper, the heat flux was assumed to be constant of 10 (W/m2) and the Reynolds number was assumed to be constant of 300 and the Hartmann number and the volume fraction of solid nanoparticles varied from 0 to 60 and 0 to 0.06, respectively. The Richardson number was considered to be 0.1, 1 and 5. Aspect ratios were 1, 1.5 and 2. Findings Comparison of the results of this paper with the results of the numerical and experimental studies of other researchers showed a good correlation. The results were presented in the form of velocity and temperature profiles, stream and isotherm lines and Nusselt numbers. The results showed that by increasing the Hartmann number, the heat transfer rate decreases. An increase from 0 to 20 in Hartmann number results in a 20 per cent decrease in Nusselt numbers, and by increasing the Hartmann number from 20 to 40, a 16 per cent decrease is observed in Nusselt number. Accordingly, it is inferred that by increasing the Hartmann number, the reduction in the Nusselt number is decreased. As the Richardson number increased, the heat transfer rate and, consequently, the Nusselt number increased. Therefore, an increase in the Richardson number results in an increase of the Nusselt number, that is, an increase in Richardson number from 0.1 to 1 and from 1 to 5 results in 37 and 47 per cent increase in Nusselt number, respectively. Originality/value Even though there have been numerous investigations conducted on convection in cavities under various configurations and boundary conditions, relatively few studies are conducted for the case of nanofluid mixed convection in square lid-driven cavity under the effect of magnetic field using two-phase model.


Sign in / Sign up

Export Citation Format

Share Document