Biomimetic Functionally Graded Materials: Synthesis by Impeller-Dry-Blending

Author(s):  
D.T. Chavara ◽  
Cyndi X. Wang ◽  
Andrew Ruys

Functionally graded materials (FGMs) can be found naturally in many biological structures, for example bamboo and the mollusc shell. They are defined as having a compositional or microstructural gradient, for example the gradation in fibre content in bamboo stems. A continuous bulk functionally graded material has the potential to be an ideal orthopaedic implant for load bearing applications. Due to the fabrication complexities involved in the production of these continuous bulk functionally graded materials, commercialisation and fabrication are still proving to be a challenge to researchers worldwide. This paper presents an overview of the redesigned novel commercially viable process known as the Impeller-Dry-Blending (IDB) process. Results presented in this paper of fabricated functionally graded materials illustrate the potential of IDB to produce continuous bulk functionally graded materials consisting of either compositional or porosity concentration changes. The successful fabrication of these continuous bulk functionally graded materials at such a low cost clearly demonstrates the commercial viability of the IDB process.

2003 ◽  
Vol 70 (3) ◽  
pp. 359-363 ◽  
Author(s):  
S. Mukherjee ◽  
Glaucio H. Paulino

Paulino and Jin [Paulino, G. H., and Jin, Z.-H., 2001, “Correspondence Principle in Viscoelastic Functionally Graded Materials,” ASME J. Appl. Mech., 68, pp. 129–132], have recently shown that the viscoelastic correspondence principle remains valid for a linearly isotropic viscoelastic functionally graded material with separable relaxation (or creep) functions in space and time. This paper revisits this issue by addressing some subtle points regarding this result and examines the reasons behind the success or failure of the correspondence principle for viscoelastic functionally graded materials. For the inseparable class of nonhomogeneous materials, the correspondence principle fails because of an inconsistency between the replacements of the moduli and of their derivatives. A simple but informative one-dimensional example, involving an exponentially graded material, is used to further clarify these reasons.


2008 ◽  
Vol 587-588 ◽  
pp. 400-404
Author(s):  
P. Pinto ◽  
L. Mazare ◽  
Delfim Soares ◽  
F.S. Silva

The Incremental Melting and Solidification Process (IMSP) is a relatively new field for material processing for the production of functionally graded materials. In this process a controlled liquid bath is maintained at the top of the component where new materials are added changing the components composition. Thus, a functionally graded material is obtained with a varying composition along one direction of the component. This paper deals with the influence of one of the process parameters, namely displacement rates between heating coil and mould, in order to evaluate its influence on both metallurgical and mechanical properties of different Al-Si alloys. Hardness and phase distribution, along the main castings axis, were measured. To better assess and characterize the process, two different Al-Si alloys with and without variation of chemical composition along the specimen were analysed. Results demonstrate that a gradual variation of metallurgical and mechanical properties along the component is obtained. It is also shown that Al-Si functionally graded materials can be produced by the incremental melting and solidification process. Results show that the displacement rate is very important on metallurgical and mechanical properties of the obtained alloy.


Author(s):  
С. И. Жаворонок ◽  

A brief review of the modern state-of-the art and tendencies of further development of various methods of solution of wave dispersion problems in heterogeneous functionally graded elastic waveguides is presented. Main types of functionally graded materials and structures, including gradient thon-walled structures, and their main engineering applications is discussed. The main difficulties of modelling of the stress-strain state of functionally graded shells and plates are pointed, as well as the possible ways to overcome such difficulties. The main theoretical bases of definition of effective constitutive constants of functionally graded materials and their possible estimates used in the practice are considered. Main dependencies of the effective constitutive constants of a functionally graded material on coordinates used for the mathematical modelling of the dynamics are also shown. The statement of the dynamics problem for a functionally graded waveguide and the appropriate statement of the normal wave dispersion problem are pointed. The presented Part I of the review consider some analytical methods of solution of dispersion problems, mainly the matrix ones based on the formulation of the steady dynamics problem in the image space as a first-order ordinary differential equations system. The state vectors corresponding to the useful Cauchy and Stroh formalisms are introduced, and the appropriate governing equations and the boundary conditions on waveguide’s faces are presented. Classical methods for solving the steady dynamics problem for a laminated waveguide are briefly described, which could be a basis for the further approximation of a functionally graded material by a system of layers with constant properties, i.e. the transfer matrix method, its main modifications developed to ensure the stability of calculations, and the global matrix method. Then, the intensively developed last 15 years reverberation matrix method, stiffness matrix method, and the Peano series method are discussed. Some key solutions of the wave dispersion problems for heterogeneous layers are presented; such solutions improve the efficiency of approximation of a functionally graded structure by a laminated one. The implicit solution of the general problem of steady dynamics for a waveguide with arbitrary gradation law is shown. The key features of the discussed matrix methods are pointed briefly as well as their main drawbacks. In the Part II, the main attention will be paid to methods of semi-analytical solution of dispersion problems based on the approximation of a waveguide by an equivalent system with a finite number of degrees of freedom: power series, generalized Fourier series, semi-analytical finite elements. spectral elements, as well as methods based on various theories of plates and shells.


2015 ◽  
Vol 55 (6) ◽  
pp. 388 ◽  
Author(s):  
Jakub Horník ◽  
Stanislav Krum ◽  
David Tondl ◽  
Maxim Puchnin ◽  
Pavel Sachr ◽  
...  

The paper deals with evaluation of single and multilayer layer PVD coatings based on Cr and Ti widely used in tool application. Additionally, W and WN based coating which are not so widespread were designed and deposited as functionally graded material. The coatings properties were evaluated from the point of view of hardness and adhesion. The hardness measuring was carried out using nanoindentation method. The scratch test was performed to test adhesion. Moreover, the presence of metallic interlayer in functionally graded materials further increases the coating adhesion by gradually approaching its composition to the substrate. Coatings consisting of W and WN have showed very good adhesion. With regard to the results of the scratch test, the multilayer coatings of CrN, TiN and WN have increased adhesion and can be assumed to have their protective function improved. Results will be appliedin development of functionally graded layers for functionally graded materials.


2005 ◽  
Vol 492-493 ◽  
pp. 403-408 ◽  
Author(s):  
Jeong Ho Kim ◽  
Glaucio H. Paulino

This paper revisits the interaction integral method to evaluate both the mixed-mode stress intensity factors and the T-stress in functionally graded materials under mechanical loading. A nonequilibrium formulation is developed in an equivalent domain integral form, which is naturally suitable to the finite element method. Graded material properties are integrated into the element stiffness matrix using the generalized isoparametric formulation. The type of material gradation considered includes continuum functions, such as an exponential function, but the present formulation can be readily extended to micromechanical models. This paper presents a fracture problem with an inclined center crack in a plate and assesses the accuracy of the present method compared with available semi-analytical solutions.


2008 ◽  
Vol 368-372 ◽  
pp. 1823-1824 ◽  
Author(s):  
Xin He ◽  
Hai Yan Du ◽  
Wei Wang ◽  
Wei Jing ◽  
Chang Liu

TZP/SUS304 functionally graded material (FGM) was developed by slip casting. Microscopic observations demonstrated that the chemical composition and microstructure of TZP/SUS FGM distributed gradually in stepwise way, eliminating the macroscopic ceramic/metal interface occurred in traditional ceramic/metal joint. Each interface of layers connected well without evident defects, and the mechanical properties of TZP/SUS system strongly depended on constitutional variation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rabia Anwar ◽  
Madiha Ghamkhar ◽  
Muhammad Imran Khan ◽  
Rabia Safdar ◽  
Muhammad Zafar Iqbal ◽  
...  

Cylindrical shells play an important role for the construction of functionally graded materials (FGMs). Functionally graded materials are valuable in order to develop durable materials. They are made of two or more materials such as nickel, stainless steel, zirconia, and alumina. They are extremely beneficial for the manufacturing of structural elements. Functionally graded materials are broadly used in several fields such as chemistry, biomedicine, optics, and electronics. In the present research, vibrations of natural frequencies are investigated for different layered cylindrical shells, those constructed from FGMs. The behavior of shell vibration is based on different parameters of geometrical material. The problem of the shell is expressed from the constitutive relations of strain and stress with displacement, as well as it is adopted from Love’s shell theory. Vibrations of natural frequencies (NFs) are calculated for simply supported-simply supported (SS-SS) and clamped-free (C-F) edge conditions. The Rayleigh–Ritz technique is employed to obtain the shell frequency equation. The shell equation is solved by MATLAB software.


Author(s):  
Igor V Andrianov ◽  
Jan Awrejcewicz ◽  
Alexander A Diskovsky

This article is focused on analysis of influence of functionally graded material parameters in the problem of longitudinal rod deformations. This analysis is based on exact and asymptotic solutions. Accuracy rating of the proposed asymptotic method of calculating deformations in constructions made of functionally graded material is also given.


2021 ◽  
Vol 6 (11) ◽  
pp. 12599-12618
Author(s):  
Chao Wang ◽  
◽  
Fajie Wang ◽  
Yanpeng Gong ◽  
◽  
...  

<abstract> <p>This paper proposes a local semi-analytical meshless method for simulating heat conduction in nonlinear functionally graded materials. The governing equation of heat conduction problem in nonlinear functionally graded material is first transformed to an anisotropic modified Helmholtz equation by using the Kirchhoff transformation. Then, the local knot method (LKM) is employed to approximate the solution of the transformed equation. After that, the solution of the original nonlinear equation can be obtained by the inverse Kirchhoff transformation. The LKM is a recently proposed meshless approach. As a local semi-analytical meshless approach, it uses the non-singular general solution as the basis function and has the merits of simplicity, high accuracy, and easy-to-program. Compared with the traditional boundary knot method, the present scheme avoids an ill-conditioned system of equations, and is more suitable for large-scale simulations associated with complicated structures. Three benchmark numerical examples are provided to confirm the accuracy and validity of the proposed approach.</p> </abstract>


Sign in / Sign up

Export Citation Format

Share Document