scholarly journals Determination Reflection and Transmission Coefficients of Lanthanum Iron Garnet Filled PVDF-Polymer Nanocomposite Using Finite Element Method Modeling at Microwave Frequencies

2012 ◽  
Vol 21 ◽  
pp. 151-157 ◽  
Author(s):  
Hasan Soleimani ◽  
Noorhana Yahya ◽  
Zulkifly Abbas ◽  
Hojjatollah Soleimani ◽  
Hasnah Mohd Zaid

In our previous work, the lanthanum iron garnet-filled PVDF-polymer nanocomposite has been prepared. The reflection and transmission coefficients of PVDF/LIG were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) at X-band frequencies (8 GHz - 12 GHz). In this study, the distribution of electric field intensity of PVDF/ LIG which was loaded in rectangular waveguide was simulated based on Finite Element Method (FEM) formulation to show the essential differences of intensity of emitted electrical field. The computations of reflection and transmission coefficients of PVDF/ LIG were determined by using implementation FEM modeling rectangular waveguide. The FEM results were compared with the experimental achievement results using the rectangular waveguide. An excellent agreement between measured and simulated results was obtained based on the values of mean relative errors.

2015 ◽  
Vol 23 (03) ◽  
pp. 1550013 ◽  
Author(s):  
M. Kharrat ◽  
M. N. Ichchou ◽  
O. Bareille ◽  
W. Zhou

This paper provides a numerical investigation onto the effect of the angular position of a defect on the wave diffusion in a steel pipe. The wave finite element method (WFEM) is used to calculate reflection and transmission coefficients from defects with different angular positions as a function of frequency. The modeled defects are impinged successively by torsional T(0, 1), longitudinal L(0, 2) and flexural F(1, 2) modes. The wave diffusion in each case is examined leading to several important remarks. Results show that the choice of the incident mode as well as the studied reflected and transmitted modes play a crucial role in the circumferential localization of defects in pipes.


1983 ◽  
Vol 105 (4) ◽  
pp. 251-258 ◽  
Author(s):  
S. I. Oh ◽  
J. J. Park ◽  
S. Kobayashi ◽  
T. Altan

The isothermal forging of a titanium alloy engine disk is analyzed by the rigid-viscoplastic finite element method. Deformation mechanics of the forging process are discussed, based on the solution. The effects of temperature and heat conduction on the forging process are also investigated by coupled thermo-viscoplastic analysis. Since the dual microstructure / property titanium disk can be obtained by controlling strain distribution during forging, the process modeling by the finite element method is especially attractive.


2014 ◽  
Author(s):  
Il-Yong Jang ◽  
Arun John ◽  
Frank Goodwin ◽  
Su-Young Lee ◽  
Byung-Gook Kim ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Abubakar Yakubu ◽  
Zulkifly Abbas ◽  
Mansor Hashim

PTFE samples were prepared with different thicknesses. Their electric field intensity and distribution of the PTFE samples placed inside a rectangular waveguide were simulated using finite element method. The calculation of transmission/reflection coefficients for all samples thickness was achieved via FEM. Amongst other observable features, result from calculation using FEM showed that the attenuation for the 15 mm PTFE sample is −3.32 dB; the 30 mm thick PTFE sample has an attenuation of 0.64 dB, while the 50 mm thick PTFE sample has an attenuation of 1.97 dB. It then suffices to say that, as the thickness of the PTFE sample increases, the attenuation of the samples at the corresponding thicknesses increases.


2013 ◽  
Vol 871 ◽  
pp. 263-268 ◽  
Author(s):  
Łukasz Łach ◽  
Dmytro Svyetlichnyy

The material properties are strongly depended on the microstructure. Recently, for modeling and prediction of microstructure evolution during the forming processes a cellular automata method is used. Combination of several methods in multiscale model allows to extend the possibilities of each method and obtain more reliable results, which are close to the real conditions. The objective of this study is development of multiscale model of microstructure evolution during the shape rolling process and use it for simulation of rolling of 5 mm round bars. Model uses for calculations the finite element (FEM) and cellular automata (CA) methods. Modeling consists of three stages: design of the shape rolling schedule with the definition of shape and sizes of grooves (FEM simulation of each pass, starting from the last pass), FEM modeling of shape rolling in the proper sequence of the passes, modeling of microstructure evolution by frontal cellular automata (FCA). Stages (especially the last two) can be repeated several times to optimize the technology in view of final microstructure. The paper presents the first stage of modeling, which includes design and selection of grooves scheme with used the finite element method. The last six passes were modeled. The rolling scheme obtained from the modeling in the next stage is simulated by FEM to obtain thermomechanical parameters of the process. Then, temperature, strain and strain rate distributions in bar cross-sections, rolling time and inter-pass time will be used as input data for modeling by FCA.


Sign in / Sign up

Export Citation Format

Share Document