On-line Frequency Estimation and Adaptive Vibration Control of Composite Structures with Delaminations

2000 ◽  
Vol 183-187 ◽  
pp. 1201-1206 ◽  
Author(s):  
Keun-Ho Rew ◽  
Jae Hung Han ◽  
In Lee
1993 ◽  
Vol 14 (2) ◽  
pp. 147-161 ◽  
Author(s):  
E. J. Hannan ◽  
D. Huang

2018 ◽  
Vol 25 (4) ◽  
pp. 834-850 ◽  
Author(s):  
H. MoradiMaryamnegari ◽  
A.M. Khoshnood

Designing a controller for multi-body systems including flexible and rigid bodies has always been one of the major engineering challenges. Equations of motion of these systems comprise extremely nonlinear and coupled terms. Vibrations of flexible bodies affect sensors of rigid bodies and might make the system unstable. Introducing a new control strategy for designing control systems which do not require the rigid–flexible coupling model and can dwindle vibrations without sensors or actuators on flexible bodies is the purpose of this paper. In this study, a spacecraft comprising a rigid body and a flexible panel is used as the case study, and its equations of motion are extracted using Lagrange equations in terms of quasi-coordinates. For oscillations on a rigid body to be eliminated, a frequency estimation algorithm and an adaptive filtering are used. A controller is designed based on the rigid model of the system, and then robust stability conditions for the rigid–flexible system are obtained. The conditions are also developed for the spacecraft with more than one active frequency. Finally, the robust adaptive vibration control system is simulated in the presence of resonance. Simulations’ results indicate the advantage of the control method even when several active frequencies simultaneously resonate the dynamics system.


2018 ◽  
Vol 28 (17) ◽  
pp. 5213-5231 ◽  
Author(s):  
Wei He ◽  
Zhe Jing ◽  
Xiuyu He ◽  
Jin-Kun Liu ◽  
Changyin Sun

2011 ◽  
Vol 186 ◽  
pp. 11-15
Author(s):  
Li Cao ◽  
Wen Chen ◽  
Jun Xiao

Video processing technology is regarded as a low-cost detection technology in complex environment. Because the placement layer is thin and the surface is complex that causes high detection error and high cost in laser measurement. Two problems must be solved before using it in large-scale composite structures automatic placement. One is to obtain the high-quality and stable image, and the other is to improve efficiency of image processing. In this paper, a method obtaining the high quality placement gap images was studied. It made use of the optical characteristics of composite material’s surface texture. And some parameters were determined by experiments. To reduce the calculation cost of image processing, a placement gap measurement method based on line scanning was also proposed here. The method was effective in our detection experiments on an actual workpiece.


Sign in / Sign up

Export Citation Format

Share Document